• Advanced Photonics
  • Vol. 3, Issue 2, 024003 (2021)
Abdul Rahim1、2、*, Artur Hermans1、2, Benjamin Wohlfeil3, Despoina Petousi3, Bart Kuyken1、2, Dries Van Thourhout1、2, and Roel Baets1、2、*
Author Affiliations
  • 1Ghent University, Photonics Research Group, Department of Information Technology, Ghent, Belgium
  • 2Ghent University, IMEC and Center for Nano- and Biophotonics, Ghent, Belgium
  • 3ADVA Optical Networking, Berlin, Germany
  • show less
    DOI: 10.1117/1.AP.3.2.024003 Cite this Article Set citation alerts
    Abdul Rahim, Artur Hermans, Benjamin Wohlfeil, Despoina Petousi, Bart Kuyken, Dries Van Thourhout, Roel Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies[J]. Advanced Photonics, 2021, 3(2): 024003 Copy Citation Text show less
    References

    [1] M. Romagnoli et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater., 3, 392-414(2018).

    [2] J. Witzens. High-speed silicon photonics modulators. Proc. IEEE, 106, 2158-2182(2018).

    [3] B. Milivojevic et al. 112  Gb/s DP-QPSK transmission over 2427-km SSMF using small-size silicon photonic IQ modulator and low-power CMOS driver(2013).

    [4] S. S. Azadeh et al. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express, 23, 23526-23550(2015). https://doi.org/10.1364/OE.23.023526

    [5] M. Webster et al. Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers(2015).

    [6] A. Narasimha et al. A 40-Gb/s QSFP optoelectronic transceiver in a 0.13-μm CMOS silicon-on-insulator technology, OMK7(2008). https://doi.org/10.1109/OFC.2008.4528356

    [7] Y. Sobu et al. 70 Gbaud operation of all-silicon Mach–Zehnder modulator based on forward-biased PIN diodes and passive equalizer, MD2-2(2019).

    [8] D. Patel et al. High-speed compact silicon photonic Michelson interferometric modulator. Opt. Express, 22, 26788-26802(2014).

    [9] J. Sun et al. A 128  Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 37, 110-115(2019). https://doi.org/10.1109/JLT.2018.2878327

    [10] K. Goi et al. Silicon Mach–Zehnder modulator using low-loss phase shifter with bottom PN junction formed by restricted-depth doping. IEICE Electron. Express, 10, 20130552(2013).

    [11] X. Tu et al. Silicon optical modulator with shield coplanar waveguide electrodes. Opt. Express, 22, 23724-23731(2014).

    [12] J. Van Campenhout et al. Low-voltage, low-loss, multi-Gb/s silicon micro-ring modulator based on a MOS capacitor(2012).

    [13] X. Xiao et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express, 21, 4116-4125(2013).

    [14] M. Li et al. Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications. Photonics Res., 6, 109-116(2018). https://doi.org/10.1364/PRJ.6.000109

    [15] X. Tu et al. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express, 21, 12776-12782(2013). https://doi.org/10.1364/OE.21.012776

    [16] D. J. Thomson et al. 50-Gb/s silicon optical modulator. IEEE Photonics Technol. Lett., 24, 234-236(2012). https://doi.org/10.1109/LPT.2011.2177081

    [17] D. Patel et al. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt. Express, 23, 14263-14287(2015).

    [18] E. Timurdogan et al. An ultralow power athermal silicon modulator. Nat. Commun., 5, 4008(2014).

    [19] J. Ding et al. Electro-optical response analysis of a 40  Gb/s silicon Mach-Zehnder optical modulator. J. Lightwave Technol., 31, 2434-2440(2013). https://doi.org/10.1109/JLT.2013.2262522

    [20] S. A. Srinivasan et al. 50  Gb/s C-band GeSi waveguide electro-absorption modulator(2016).

    [21] G. T. Reed et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 3, 229-245(2014).

    [22] D. Petousi et al. Monolithically integrated high-extinction-ratio MZM with a segmented driver in photonic BiCMOS. IEEE Photonics Technol. Lett., 28, 2866-2869(2016).

    [23] A. Chen, E. E. Murphy. Broadband Optical Modulators: Science, Technology, and Applications(2012).

    [24] S. K. Kim et al. Theoretical and experimental study of 10  Gb/s transmission performance using 1.55-μmLiNbO3-based transmitters with adjustable extinction ratio and chirp. J. Lightwave Technol., 17, 1320-1325(1999). https://doi.org/10.1109/50.779152

    [25] N. Qi et al. Co-design and demonstration of a 25-Gb/s silicon-photonic Mach–Zehnder modulator with a CMOS-based high-swing driver. IEEE J. Sel. Top. Quantum Electron., 22, 131-140(2016). https://doi.org/10.1109/JSTQE.2016.2602102

    [26] L. Chen, P. Dong, Y. Chen. Chirp and dispersion tolerance of a single-drive push–pull silicon modulator at 28  Gb/s. IEEE Photonics Technol. Lett., 24, 936-938(2012). https://doi.org/10.1109/LPT.2012.2191149

    [27] M. Jacques et al. Modulator material impact on chirp, DSP, and performance in coherent digital links: comparison of the lithium niobate, indium phosphide, and silicon platforms. Opt. Express, 26, 22471-22490(2018).

    [28] K. Goi et al. 20-Gbps BPSK silicon Mach–Zehnder modulator with excellent chirp-free performance, 238-239(2012).

    [29] R. Li et al. High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators. Opt. Express, 25, 13222-13229(2017).

    [30] K. Goi et al. 11-Gb/s 80-km transmission performance of zero-chirp silicon Mach–Zehnder modulator. Opt. Express, 20, B350-B356(2012). https://doi.org/10.1364/OE.20.00B350

    [31] J. Liu et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photonics, 2, 433-437(2008).

    [32] D. Marris-Morini et al. Low loss 40  Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers. Opt. Express, 21, 22471-22475(2013). https://doi.org/10.1364/OE.21.022471

    [33] J. C. Rosenberg et al. A 25 Gbps silicon microring modulator based on an interleaved junction. Opt. Express, 20, 26411-26423(2012).

    [34] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [35] Q. Cheng et al. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [36] M. Asghari, A. V. Krishnamoorthy. Energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [37] F. Boeuf et al. Benchmarking Si, SiGe, and III-V/Si hybrid SIS optical modulators for datacenter applications. J. Lightwave Technol., 35, 4047-4055(2017).

    [38] N.-N. Feng et al. 30 GHz Ge electro-absorption modulator integrated with 3  μm silicon-on-insulator waveguide. Opt. Express, 19, 7062-7067(2011). https://doi.org/10.1364/OE.19.007062

    [39] A. Rahim et al. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE, 106, 2313-2330(2018).

    [40] A. Meighan et al. Design of 100 GHz-class Mach–Zehnder modulators in a generic indium phosphide platform(2020).

    [41] S. Lange et al. 100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach–Zehnder modulator. J. Lightwave Technol., 36, 97-102(2018).

    [42] M. Smit, K. Williams, J. van der Tol. Past, present, and future of InP-based photonic integration. APL Photonics, 4, 050901(2019).

    [43] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [44] P. De Dobbelaere et al. Advanced silicon photonics technology platform leveraging a semiconductor supply chain, 34.1.1-34.1.4(2017).

    [45] D. J. Shin et al. Integration of silicon photonics into DRAM process(2013).

    [46] R. Meade et al. TeraPHY: a high-density electronic-photonic Chiplet for optical I/O from a multi-chip module(2019).

    [47] F. Boeuf et al. Recent progress in silicon photonics R&D and manufacturing on 300 mm wafer platform(2015).

    [48] S. Fathololoumi et al. 1.6Tbps silicon photonics integrated circuit for co-packaged optical-IO switch applications(2020).

    [49] X. Chen et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 106, 2101-2116(2018).

    [50] C. Doerr et al. Single-chip silicon photonics 100-Gb/s coherent transceiver(2014).

    [51] J. C. Rosenberg et al. Low-power 30 Gbps silicon microring modulator(2011).

    [52] C. Xiong et al. Monolithic 56  Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 3, 1060-1065(2016). https://doi.org/10.1364/OPTICA.3.001060

    [53] Cisco annual internet report (2018-2023) white paper—Cisco.

    [54] P. J. Winzer, D. T. Neilson, A. R. Chraplyvy. “Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Opt. Express, 26, 24190-24239(2018).

    [55] P. Dong et al. 50-Gb/s silicon quadrature phase-shift keying modulator. Opt. Express, 20, 21181-21186(2012). https://doi.org/10.1364/OE.20.021181

    [56] P. Dong et al. Experimental demonstration of microring quadrature phase-shift keying modulators. Opt. Lett., 37, 1178-1180(2012).

    [57] 802.3bs-2017—IEEE Standard for Ethernet Amendment 10: media access control parameters, physical layers, and management parameters for 200  Gb/s and 400  Gb/s operation,”. https://standards.ieee.org/standard/802_3bs-2017.html

    [58] X. Zhou, R. Urata, H. Liu. Beyond 1  Tb/s intra-data center interconnect technology: IM-DD OR coherent?. J. Lightwave Technol., 38, 475-484(2020). https://doi.org/10.1109/JLT.2019.2956779

    [59] B. Jalali, S. Fathpour. Silicon photonics. J. Lightwave Technol., 24, 4600-4615(2006).

    [60] W. Bogaerts et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol., 23, 401-412(2005).

    [61] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [62] Q. Xu et al. Micrometre-scale silicon electro-optic modulator. Nature, 435, 325-327(2005).

    [63] G. T. Reed, C. J. Png. Silicon optical modulators. Mater. Today, 8, 40-50(2005).

    [64] C. K. Tang, G. T. Reed. Highly efficient optical phase modulator in SOI waveguides. Electron. Lett., 31, 451-452(1995).

    [65] T. Baba et al. 25-Gb/s broadband silicon modulator with 0.31-V·cmVπL based on forward-biased PIN diodes embedded with passive equalizer. Opt. Express, 23, 32950-32960(2015). https://doi.org/10.1364/OE.23.032950

    [66] S. Tanaka et al. Ultralow-power (1.59  mW/Gbps), 56-Gbps PAM4 operation of Si photonic transmitter integrating segmented PIN Mach–Zehnder modulator and 28-nm CMOS driver. J. Lightwave Technol., 36, 1275-1280(2018). https://doi.org/10.1109/JLT.2018.2799965

    [67] S. Akiyama et al. High-performance silicon modulator for integrated transceivers fabricated on 300-mm wafer, P.2.8(2014).

    [68] M. Webster et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters, WB1(2014).

    [69] J. Fujikata et al. High-performance MOS-capacitor-type Si optical modulator and surface-illumination-type Ge photodetector for optical interconnection. Jpn. J. Appl. Phys., 55, 04EC01(2016).

    [70] M. Sodagar et al. Compact, 15  Gb/s electro-optic modulator through carrier accumulation in a hybrid Si/SiO2/Si microdisk. Opt. Express, 23, 28306-28315(2015). https://doi.org/10.1364/OE.23.028306

    [71] H. Yi et al. Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission. Opt. Express, 20, 27562-27568(2012).

    [72] J.-B. You et al. 12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric P–N diode. Opt. Express, 16, 18340-18344(2008).

    [73] D. J. Thomson et al. High speed silicon optical modulator with self aligned fabrication process. Opt. Express, 18, 19064-19069(2010).

    [74] D. J. Thomson et al. High performance Mach–Zehnder-based silicon optical modulators. IEEE J. Sel. Top. Quantum Electron., 19, 85-94(2013).

    [75] N.-N. Feng et al. High speed carrier-depletion modulators with 1.4  V-cmVπL integrated on 0.25  μm silicon-on-insulator waveguides. Opt. Express, 18, 7994-7999(2010). https://doi.org/10.1364/OE.18.007994

    [76] P. Dong et al. Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express, 17, 22484-22490(2009). https://doi.org/10.1364/OE.17.022484

    [77] D. J. Thomson et al. High contrast 40  Gbit/s optical modulation in silicon. Opt. Express, 19, 11507-11516(2011). https://doi.org/10.1364/OE.19.011507

    [78] D. Marris-Morini et al. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt. Express, 16, 334-339(2008).

    [79] M. Ziebell et al. 40  Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt. Express, 20, 10591-10596(2012). https://doi.org/10.1364/OE.20.010591

    [80] H. Xu et al. High speed silicon Mach–Zehnder modulator based on interleaved PN junctions. Opt. Express, 20, 15093-15099(2012).

    [81] H. Yu, W. Bogaerts, A. De Keersgieter. Optimization of ion implantation condition for depletion-type silicon optical modulators. IEEE J. Quantum Electron., 46, 1763-1768(2010).

    [82] H. Xu et al. 44  Gbit/s silicon Mach–Zehnder modulator based on interleaved PN junctions, 201-203(2012). https://doi.org/10.1109/GROUP4.2012.6324133

    [83] Z.-Y. Li et al. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt. Express, 17, 15947-15958(2009).

    [84] M. Ziebell et al. Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions. Opt. Express, 19, 14690-14695(2011).

    [85] F. Y. Gardes et al. 40  Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express, 19, 11804-11814(2011). https://doi.org/10.1364/OE.19.011804

    [86] X. Xiao et al. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photonics Technol. Lett., 24, 1712-1714(2012). https://doi.org/10.1109/LPT.2012.2213244

    [87] X. Xiao et al. High speed silicon photonic modulators(2017).

    [88] A. Irace, G. Breglio, A. Cutolo. All-silicon optoelectronic modulator with 1 GHz switching capability. Electron. Lett., 39, 232-233(2003).

    [89] R. Soref, J. Larenzo. All-silicon active and passive guided-wave components for λ=13 and 1.6  μm. IEEE J. Quantum Electron., 22, 873-879(1986). https://doi.org/10.1109/JQE.1986.1073057

    [90] A. Cutolo et al. Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide. J. Lightwave Technol., 15, 505-518(1997).

    [91] S. Akiyama et al. Compact PIN-diode-based silicon modulator using side-wall-grating waveguide. IEEE J. Sel. Top. Quantum Electron., 19, 74-84(2013).

    [92] S. J. Spector et al. High-speed silicon electro-optical modulator that can be operated in carrier depletion or carrier injection mode, CFH4(2008).

    [93] A. Sciuto et al. Design, fabrication, and testing of an integrated Si-based light modulator. J. Lightwave Technol., 21, 228-235(2003).

    [94] S. J. Spector et al. Operation and optimization of silicon-diode-based optical modulators. IEEE J. Sel. Top. Quantum Electron., 16, 165-172(2010).

    [95] J. C. Rosenberg et al. Ultra-low-voltage micro-ring modulator integrated with a CMOS feed-forward equalization driver(2011).

    [96] C. E. Png et al. Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). J. Lightwave Technol., 22, 1573-1582(2004).

    [97] Q. Xu et al. 12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express, 15, 430-436(2007). https://doi.org/10.1364/OE.15.000430

    [98] A. Shakoor et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt. Express, 22, 28623-28634(2014).

    [99] W. M. J. Green et al. Ultra-compact, low RF power, 10  Gb/s silicon Mach-Zehnder modulator. Opt. Express, 15, 17106-17113(2007). https://doi.org/10.1364/OE.15.017106

    [100] S. Meister et al. High-speed Fabry–Pérot optical modulator in silicon with 3-μm diode. J. Lightwave Technol., 33, 878-881(2015). https://doi.org/10.1109/JLT.2015.2390077

    [101] L. Liao et al. High speed silicon Mach–Zehnder modulator. Opt. Express, 13, 3129-3135(2005).

    [102] A. Liu et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature, 427, 615-618(2004).

    [103] K. Debnath et al. All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photonics Res., 6, 373-379(2018).

    [104] A. Abraham et al. Evaluation of the performances of a silicon optical modulator based on a silicon-oxide-silicon capacitor, WB2(2014).

    [105] E. Li et al. One-volt silicon photonic crystal nanocavity modulator with indium oxide gate. Opt. Lett., 43, 4429-4432(2018).

    [106] L. Liao et al. 40  Gbit/s silicon optical modulator for high-speed applications. Electron. Lett., 43, 1196-1197(2007). https://doi.org/10.1049/el:20072253

    [107] Y. Maegami et al. High-efficiency strip-loaded waveguide based silicon Mach–Zehnder modulator with vertical p-n junction phase shifter. Opt. Express, 25, 31407-31416(2017).

    [108] A. Liu et al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express, 15, 660-668(2007).

    [109] F. Y. Gardes et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express, 13, 8845-8854(2005).

    [110] M. R. Watts et al. Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 16, 159-164(2010).

    [111] M. R. Watts et al. Vertical junction silicon microdisk modulators and switches. Opt. Express, 19, 21989-22003(2011).

    [112] H. C. Nguyen et al. Compact and fast photonic crystal silicon optical modulators. Opt. Express, 20, 22465-22474(2012).

    [113] Y. Terada et al. Full C-band Si photonic crystal waveguide modulator. Opt. Lett., 42, 5110-5112(2017).

    [114] Y. Hinakura, H. Arai, T. Baba. 64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching. Opt. Express, 27, 14321-14327(2019).

    [115] R. Dubé-Demers, S. LaRochelle, W. Shi. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica, 3, 622-627(2016).

    [116] P. Dong, L. Chen, Y. K. Chen. High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators. Opt. Express, 20, 6163-6169(2012).

    [117] M. Streshinsky et al. Low power 50  Gb/s silicon traveling wave Mach–Zehnder modulator near 1300 nm. Opt. Express, 21, 30350-30357(2013). https://doi.org/10.1364/OE.21.030350

    [118] T. Baehr-Jones et al. Ultralow drive voltage silicon traveling-wave modulator. Opt. Express, 20, 12014-12020(2012).

    [119] R. Ding et al. A compact low-power 320-Gb/s WDM transmitter based on silicon microrings. IEEE Photonics J., 6, 6600608(2014). https://doi.org/10.1109/JPHOT.2014.2326656

    [120] X. Tu et al. Fabrication of low loss and high speed silicon optical modulator using doping compensation method. Opt. Express, 19, 18029-18035(2011).

    [121] X. Li et al. Highly efficient silicon Michelson interferometer modulators. IEEE Photonics Technol. Lett., 25, 407-409(2013).

    [122] K. Li et al. Electronic–photonic convergence for silicon photonics transmitters beyond 100 Gbps on–off keying. Optica, 7, 1514-1516(2020).

    [123] H. Zhang et al. 800  Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res., 8, 1776-1782(2020). https://doi.org/10.1364/PRJ.396815

    [124] D. Pérez-Galacho et al. QPSK modulation in the O-band using a single dual-drive Mach–Zehnder silicon modulator. J. Lightwave Technol., 36, 3935-3940(2018).

    [125] F. Fresi et al. Silicon photonics integrated 16-QAM modulator exploiting only binary driving electronics(2016).

    [126] S. Zhalehpour et al. All-silicon IQ modulator for 100 GBaud 32QAM transmissions(2019).

    [127] L. Deniel et al. DAC-less PAM-4 generation in the O-band using a silicon Mach-Zehnder modulator. Opt. Express, 27, 9740-9748(2019).

    [128] Y. Kim et al. Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators. Sci. Rep., 4, 4683(2014).

    [129] C. G. Bottenfield, V. A. Thomas, S. E. Ralph. Silicon photonic modulator linearity and optimization for microwave photonic links. IEEE J. Sel. Top. Quantum Electron., 25, 3400110(2019).

    [130] L. Chrostowski et al. Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits(2014).

    [131] W. Bogaerts et al. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).

    [132] B. Guha, B. B. C. Kyotoku, M. Lipson. CMOS-compatible athermal silicon microring resonators. Opt. Express, 18, 3487-3493(2010).

    [133] D. Feng et al. High-speed GeSi electroabsorption modulator on the SOI waveguide platform. IEEE J. Sel. Top. Quantum Electron., 19, 64-73(2013).

    [134] S. Gupta et al. 50-GHz Ge waveguide electro-absorption modulator integrated in a 220 nm SOI photonics platform(2015).

    [135] D. Feng et al. High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt. Express, 20, 22224-22232(2012).

    [136] S. A. Srinivasan et al. 56  Gb/s Germanium waveguide electro-absorption modulator. J. Lightwave Technol., 34, 419-424(2016). https://doi.org/10.1109/JLT.2015.2478601

    [137] J. Verbist et al. 100  Gb/s DAC-less and DSP-free transmitters using GeSi EAMs for short-reach optical interconnects(2018).

    [138] A. E.-J. Lim et al. Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p–i–n photodetector. Opt. Express, 19, 5040-5046(2011).

    [139] L. Mastronardi et al. High-speed Si/GeSi hetero-structure electro absorption modulator. Opt. Express, 26, 6663-6673(2018).

    [140] Y. Tang, J. D. Peters, J. E. Bowers. Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3  μm transmission. Opt. Express, 20, 11529-11535(2012). https://doi.org/10.1364/OE.20.011529

    [141] P. Chaisakul et al. Integrated germanium optical interconnects on silicon substrates. Nat. Photonics, 8, 482-488(2014).

    [142] P. Chaisakul et al. Recent progress in GeSi electro-absorption modulators. J. Lightwave Technol., 15, 014601(2014).

    [143] J. Frigerio et al. Giant electro-optic effect in Ge/SiGe coupled quantum wells. Sci. Rep., 5, 15398(2015).

    [144] Y.-H. Kuo et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 437, 1334-1336(2005).

    [145] D. A. B. Miller et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett., 53, 2173-2176(1984).

    [146] D. A. B. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346-396(2017).

    [147] S. Ren et al. Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. IEEE Photonics Technol. Lett., 24, 461-463(2012).

    [148] P. Chaisakul et al. 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator. Opt. Express, 20, 3219-3224(2012).

    [149] R. M. Audet et al. Surface-normal Ge/SiGe asymmetric Fabry–Perot optical modulators fabricated on silicon substrates. J. Lightwave Technol., 31, 3995-4003(2013).

    [150] E. H. Edwards et al. Ge/SiGe asymmetric Fabry–Perot quantum well electroabsorption modulators. Opt. Express, 20, 29164-29173(2012).

    [151] P. Chaisakul et al. Recent progress on Ge/SiGe quantum well optical modulators, detectors, and emitters for optical interconnects. Photonics, 6, 24(2019).

    [152] S. A. Srinivasan et al. High absorption contrast quantum confined Stark effect in ultra-thin Ge/SiGe quantum well stacks grown on Si. IEEE J. Quantum Electron., 56, 5200207(2020).

    [153] M. Liu et al. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [154] M. A. Giambra et al. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express, 27, 20145-20155(2019).

    [155] M. Mohsin et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide. Opt. Express, 22, 15292-15297(2014).

    [156] M. Liu, X. Yin, X. Zhang. Double-layer graphene optical modulator. Nano Lett., 12, 1482-1485(2012).

    [157] Y. Hu et al. Broadband 10  Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev., 10, 307-316(2016). https://doi.org/10.1002/lpor.201500250

    [158] C. T. Phare et al. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics, 9, 511-514(2015).

    [159] L. A. Shiramin et al. High extinction ratio hybrid graphene-silicon photonic crystal switch. IEEE Photonics Technol. Lett., 30, 157-160(2018).

    [160] V. Sorianello et al. Chirp management in silicon-graphene electro absorption modulators. Opt. Express, 25, 19371-19381(2017).

    [161] J.-H. Han et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [162] J. Witzens. Modulators make efficiency leap. Nat. Photonics, 11, 459-462(2017).

    [163] T. Hiraki et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photonics, 11, 482-485(2017).

    [164] Q. Li et al. Si racetrack modulator with III-V/Si hybrid MOS optical phase shifter(2019).

    [165] Q. Li et al. Efficient optical modulator by reverse-biased III-V/Si hybrid MOS capacitor based on FK effect and carrier depletion(2019).

    [166] T. Komljenovic et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE, 106, 2246-2257(2018).

    [167] L. Cao et al. Hybrid amorphous silicon (a-Si:H)-LiNbO3 electro-optic modulator. Opt. Commun., 330, 40-44(2014). https://doi.org/10.1016/j.optcom.2014.05.021

    [168] A. Rao et al. Heterogeneous microring and Mach–Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express, 23, 22746-22752(2015).

    [169] L. Chen et al. Hybrid silicon and lithium niobate electro-optical ring modulator. Optica, 1, 112-118(2014).

    [170] S. Jin et al. LiNbO3 thin-film modulators using silicon nitride surface ridge waveguides. IEEE Photonics Technol. Lett., 28, 736-739(2016). https://doi.org/10.1109/LPT.2015.2507136

    [171] A. Rao et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett., 41, 5700-5703(2016).

    [172] N. Boynton et al. A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator. Opt. Express, 28, 1868-1884(2020).

    [173] P. O. Weigel et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express, 26, 23728-23739(2018).

    [174] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100  Gbit s1 and beyond. Nat. Photonics, 13, 359-364(2019). https://doi.org/10.1038/s41566-019-0378-6

    [175] M. Li, H. X. Tang. Strong Pockels materials. Nat. Mater., 18, 9-11(2019).

    [176] S. Abel et al. A hybrid barium titanate-silicon photonics platform for ultraefficient electro-optic tuning. J. Lightwave Technol., 34, 1688-1693(2016).

    [177] C. Xiong et al. Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices. Nano Lett., 14, 1419-1425(2014). https://doi.org/10.1021/nl404513p

    [178] F. Eltes et al. Low-loss BaTiO3Si waveguides for nonlinear integrated photonics. ACS Photonics, 3, 1698-1703(2016). https://doi.org/10.1021/acsphotonics.6b00350

    [179] S. Abel et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater., 18, 42-47(2019).

    [180] A. Messner et al. Integrated ferroelectric BaTiO3/Si plasmonic modulator for 100  Gbit/s and beyond(2018).

    [181] F. Eltes et al. A novel 25 Gbps electro-optic Pockels modulator integrated on an advanced Si photonic platform, 24.5.1-24.5.4(2017).

    [182] F. Eltes et al. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Lightwave Technol., 37, 1456-1462(2019). https://doi.org/10.1109/JLT.2019.2893500

    [183] K. Alexander et al. Broadband electro-optic modulation using low-loss PZT-on-silicon nitride integrated waveguides(2017).

    [184] K. Alexander et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat Commun, 9, 3444(2018).

    [185] K. Alexander. Integrated silicon nitride photonics with highly nonlinear thin films and 2D materials: properties and devices(2018).

    [186] C. Koos et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics, 3, 216-219(2009).

    [187] D. Korn et al. Lasing in silicon–organic hybrid waveguides. Nat. Commun., 7, 10864(2016).

    [188] C. Koos et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J. Lightwave Technol., 34, 256-268(2016).

    [189] R. Palmer et al. High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material. J. Lightwave Technol., 32, 2726-2734(2014).

    [190] C. Kieninger et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 5, 739-748(2018).

    [191] L. Alloatti et al. 100 GHz silicon–organic hybrid modulator. Light Sci. Appl., 3, e173(2014).

    [192] S. Koeber et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci. Appl., 4, e255(2015).

    [193] H. Zwickel et al. Silicon-organic hybrid (SOH) modulators for intensity-modulation/direct-detection links with line rates of up to 120  Gbit/s. Opt. Express, 25, 23784-23800(2017). https://doi.org/10.1364/OE.25.023784

    [194] C. Kieninger et al. Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. Opt. Express, 28, 24693-24707(2020).

    [195] C. Kieninger et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85°C. Opt. Express, 26, 27955-27964(2018).

    [196] S. Wolf et al. Silicon-organic hybrid (SOH) Mach–Zehnder modulators for 100  Gbit/s on-off keying. Sci. Rep., 8, 2598(2018). https://doi.org/10.1038/s41598-017-19061-8

    [197] T. Baehr-Jones et al. Optical modulation and detection in slotted Silicon waveguides. Opt. Express, 13, 5216-5226(2005).

    [198] H. Figi et al. Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices. J. Opt. Soc. Am. B, 28, 2291-2300(2011).

    [199] D. Korn et al. Electro-optic organic crystal silicon high-speed modulator. IEEE Photonics J., 6, 2700109(2014).

    [200] S. Ummethala et al. Capacitively coupled silicon-organic hybrid modulator for 200 Gbit/s PAM-4 signaling(2019).

    [201] V. Sorianello et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nat. Photonics, 12, 40-44(2018).

    [202] M. Midrio et al. Graphene-based optical phase modulation of waveguide transverse electric modes. Photonics Res., 2, A34-A40(2014).

    [203] H. Dalir et al. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 3, 1564-1568(2016).

    [204] I. Datta et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photonics, 14, 256-262(2020).

    [205] S. Ye et al. High-speed optical phase modulator based on graphene-silicon waveguide. IEEE J. Sel. Top. Quantum Electron., 23, 76-80(2017).

    [206] C. Xu et al. Characteristics of electro-refractive modulating based on graphene-oxide-silicon waveguide. Opt. Express, 20, 22398-22405(2012).

    [207] M. Mohsin et al. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep., 5, 10967(2015).

    [208] L. Yang et al. Low-chirp high-extinction-ratio modulator based on graphene–silicon waveguide. Opt. Lett., 38, 2512-2515(2013).

    [209] J. Leuthold et al. High-speed, low-power optical modulators in silicon, We.D2.1(2013).

    [210] A. Moscoso-Mártir et al. Co-integration of a temperature tolerant low impedance resonantly enhanced silicon photonics modulator, 101-102(2017).

    [211] X. Li et al. Single-drive high-speed lumped depletion-type modulators toward 10  fJ/bit energy consumption. Photonics Res., 5, 134-142(2017). https://doi.org/10.1364/PRJ.5.000134

    [212] A. Giuglea et al. Comparison of segmented and traveling-wave electro-optical transmitters based on silicon photonics Mach–Zehnder modulators(2018).

    [213] S. Lin et al. Electronic-photonic co-optimization of high-speed silicon photonic transmitters. J. Lightwave Technol., 35, 4766-4780(2017).

    [214] D. J. Thomson et al. Optical detection and modulation at 2  μm -2.5  μm in silicon. Opt. Express, 22, 10825-10830(2014). https://doi.org/10.1364/OE.22.010825

    [215] M. Montesinos-Ballester et al. Optical modulation in Ge-rich SiGe waveguides in the mid-infrared wavelength range up to 11  μm. Commun. Mater., 1, 6(2020). https://doi.org/10.1038/s43246-019-0003-8

    [216] J. P. Lorenzo, R. A. Soref. 1.3  μm electro-optic silicon switch. Appl. Phys. Lett., 51, 6-8(1987). https://doi.org/10.1063/1.98887

    [217] B. Chmielak et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Opt. Express, 19, 17212-17219(2011).

    [218] R. S. Jacobsen et al. Strained silicon as a new electro-optic material. Nature, 441, 199-202(2006).

    [219] P. Damas et al. Wavelength dependence of Pockels effect in strained silicon waveguides. Opt. Express, 22, 22095-22100(2014).

    [220] Y. Shiraki, Y. Shiraki, N. Usami et al. Silicon-Germanium (SiGe) Nanostructures(2011).

    [221] L. Vivien, L. E. Pavesi. Handbook of Silicon Photonics(2013).

    [222] M. Zeiler et al. Radiation damage in silicon photonic Mach–Zehnder modulators and photodiodes. IEEE Trans. Nucl. Sci., 64, 2794-2801(2017).

    [223] Photonic integration and photonics-electronics convergence on silicon platform.

    [224] U. Chakraborty et al. Cryogenic operation of silicon photonic modulators based on the DC Kerr effect. Optica, 7, 1385-1390(2020).

    [225] M. Gehl et al. Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica, 4, 374-382(2017).

    [226] S. M. Jackson et al. A novel optical phase modulator design suitable for phased arrays. J. Lightwave Technol., 16, 2016-2019(1998).

    [227] J. Shin et al. Epitaxial growth technology for optical interconnect based on bulk-Si platform(2013).

    [228] O. Marshall et al. Heterogeneous integration on silicon photonics. Proc. IEEE, 106, 2258-2269(2018).

    [229] S. Kodama, T. Yoshimatsu, H. Ito. 500  Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator. Electron. Lett., 40, 555-556(2004). https://doi.org/10.1049/el:20040391

    [230] S. A. Srinivasan. Advanced Germanium devices for optical interconnects(2017).

    [231] A. Melikyan et al. Differential drive I/Q modulator based on silicon photonic electro-absorption modulators. J. Lightwave Technol., 38, 2872-2876(2020).

    [232] Y. Tong et al. Integrated germanium-on-silicon Franz–Keldysh vector modulator used with a Kramers–Kronig receiver. Opt. Lett., 43, 4333-4336(2018).

    [233] J. Verbist et al. Real-time and DSP-free 128  Gb/s PAM-4 link using a binary driven silicon photonic transmitter. J. Lightwave Technol., 37, 274-280(2019). https://doi.org/10.1109/JLT.2018.2877461

    [234] K. M. Rabe et al. Modern Physics of Ferroelectrics: Essential Background, 1-30(2007).

    [235] M. Veithen, X. Gonze, P. Ghosez. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B, 71, 125107(2005).

    [236] H. Buhay et al. Pulsed laser deposition and ferroelectric characterization of bismuth titanate films. Appl. Phys. Lett., 58, 1470-1472(1991).

    [237] D. J. R. Appleby et al. Ferroelectric properties in thin film barium titanate grown using pulsed laser deposition. J. Appl. Phys., 116, 124105(2014).

    [238] T. Kobayashi et al. Effect of multi-coating process on the orientation and microstructure of lead zirconate titanate (PZT) thin films derived by chemical solution deposition. Thin Solid Films, 489, 74-78(2005).

    [239] Z. Bi, Z. Zhang, P. Fan. Characterization of PZT ferroelectric thin films by RF-magnetron sputtering. J. Phys. Conf. Ser., 61, 120-124(2007).

    [240] T. Li et al. Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films. Appl. Phys. Lett., 68, 616-618(1996). https://doi.org/10.1063/1.116486

    [241] F. Zhang et al. Atomic layer deposition of Pb(Zr,Ti)Ox on 4H-SiC for metal-ferroelectric-insulator-semiconductor diodes. J. Appl. Phys., 109, 124109(2011).

    [242] E. L. Wooten et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron., 6, 69-82(2000).

    [243] M. Zhang et al. Ultra-high bandwidth integrated lithium niobate modulators with record-low Vπ(2018).

    [244] K. Noguchi, O. Mitomi, H. Miyazawa. Millimeter-wave Ti:LiNbO3 optical modulators. J. Lightwave Technol., 16, 615-619(1998). https://doi.org/10.1109/50.664072

    [245] G. Poberaj et al. Lithium niobate on insulator (LNOI) for micro-photonic devices. Laser Photonics Rev., 6, 488-503(2012).

    [246] A. J. Mercante et al. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [247] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [248] H. Takagi, R. Maeda. Room temperature bonding of silicon and lithium niobate. Appl. Phys. Lett., 89, 031914(2006).

    [249] P. Rabiei et al. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express, 21, 25573-25581(2013).

    [250] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [251] P. Bernasconi, M. Zgonik, P. Günter. Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals. J. Appl. Phys., 78, 2651-2658(1995).

    [252] R. A. McKee et al. Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Appl. Phys. Lett., 59, 782-784(1991).

    [253] A. Petraru et al. Ferroelectric BaTiO3 thin-film optical waveguide modulators. Appl. Phys. Lett., 81, 1375-1377(2002). https://doi.org/10.1063/1.1498151

    [254] A. A. Demkov, A. B. Posadas. Integration of Functional Oxides with Semiconductors(2014).

    [255] M.-H. Hsu. Monolithic integration of barium titanate on silicon for high-speed and power-efficient optical modulator applications(2016).

    [256] J. P. George et al. Lanthanide-assisted deposition of strongly electro-optic PZT thin films on silicon: toward integrated active nanophotonic devices. ACS Appl. Mater. Interfaces, 7, 13350-13359(2015).

    [257] J. P. George. Integration of ferroelectric thin films on silicon for electro-optic devices(2016).

    [258] W. Heni et al. Silicon–organic and plasmonic–organic hybrid photonics. ACS Photonics, 4, 1576-1590(2017).

    [259] H. Zwickel et al. Verified equivalent-circuit model for slot-waveguide modulators. Opt. Express, 28, 12951-12976(2020).

    [260] S. Wolf et al. DAC-less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators. J. Lightwave Technol., 33, 1425-1432(2015).

    [261] S. Wolf et al. Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices. Opt. Express, 26, 220-232(2018).

    [262] G.-W. Lu et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200  Gbit s1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun., 11, 4224(2020). https://doi.org/10.1038/s41467-020-18005-7

    [263] M. Jazbinsek et al. Organic electro-optic single crystalline films for integrated optics. Proc. SPIE, 7774, 77740Q(2010).

    [264] A. Melikyan et al. High-speed plasmonic phase modulators. Nat. Photonics, 8, 229-233(2014).

    [265] C. Haffner et al. Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale. Proc. IEEE, 104, 2362-2379(2016).

    [266] C. Hoessbacher et al. Plasmonic modulator with 170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt. Express, 25, 1762-1768(2017).

    [267] C. Uhl, H. Hettrich, M. Möller. A 100  Gbit/s 2 Vpp power multiplexer in SiGe BiCMOS technology for directly driving a monolithically integrated plasmonic MZM in a silicon photonics transmitter, 106-109(2017). https://doi.org/10.1109/BCTM.2017.8112921

    [268] W. Heni et al. High speed plasmonic modulator array enabling dense optical interconnect solutions. Opt. Express, 23, 29746-29757(2015).

    [269] A. Melikyan et al. Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40  Gbit/s. Opt. Express, 23, 9938-9946(2015). https://doi.org/10.1364/OE.23.009938

    [270] S. Ummethala et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics, 13, 519-524(2019).

    [271] G. Duan et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron., 20, 158-170(2014).

    [272] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511-517(2010).

    [273] T. Shimizu et al. High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection, 181-183(2011).

    [274] G. Roelkens et al. III-V/Si PICs based on micro-transfer-printing(2019).

    [275] A. J. Zilkie et al. Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 25, 8200713(2019).

    [276] B. Szelag et al. Hybrid III-V/silicon technology for laser integration on a 200-mm fully CMOS-compatible silicon photonics platform. IEEE J. Sel. Top. Quantum Electron., 25, 8201210(2019).

    [277] A. Alduino. Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers, 1-29(2010).

    [278] S. Chen et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics, 10, 307-311(2016).

    [279] Z. Wang et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [280] Q. Li et al. Optical phase modulators based on reverse-biased III-V/Si hybrid metal-oxide-semiconductor capacitors. IEEE Photonics Technol. Lett., 32, 345-348(2020).

    [281] S. Ohno et al. Taper-less III-V/Si hybrid MOS optical phase shifter using ultrathin InP membrane(2020).

    [282] Y. Tang et al. 50  Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt. Express, 19, 5811-5816(2011). https://doi.org/10.1364/OE.19.005811

    [283] C. Mattevi, H. Kim, M. Chhowalla. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem., 21, 3324-3334(2011).

    [284] Y. S. Kim et al. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography. Nanoscale, 6, 10100-10105(2014). https://doi.org/10.1039/C4NR02001D

    [285] X. Li et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312-1314(2009).

    [286] R. R. Nair et al. Fine structure constant defines visual transparency of graphene. Science, 320, 1308(2008).

    [287] K. I. Bolotin et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun., 146, 351-355(2008).

    [288] A. S. Mayorov et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 11, 2396-2399(2011).

    [289] V. Sorianello, M. Midrio, M. Romagnoli. Design optimization of single and double layer graphene phase modulators in SOI. Opt. Express, 23, 6478-6490(2015).

    [290] F. Wang et al. Gate-variable optical transitions in graphene. Science, 320, 206-209(2008).

    [291] L. A. Falkovsky. Optical properties of graphene. J. Phys. Conf. Ser., 129, 012004(2008).

    CLP Journals

    [1] Jiacheng Liu, Gangqiang Zhou, Jiangbing Du, Weihong Shen, Linjie Zhou, Zuyuan He. Silicon mode-loop Mach-Zehnder modulator with L-shaped PN junction for 0.37 V·cm VπL high-efficiency modulation[J]. Photonics Research, 2022, 10(1): 214

    [2] Ang Gao, Chen Yang, Likun Chen, Ru Zhang, Qiang Luo, Wei Wang, Qitao Cao, Zhenzhong Hao, Fang Bo, Guoquan Zhang, Jingjun Xu. Directional emission in X-cut lithium niobate microresonators without chaos dynamics[J]. Photonics Research, 2022, 10(2): 401

    Abdul Rahim, Artur Hermans, Benjamin Wohlfeil, Despoina Petousi, Bart Kuyken, Dries Van Thourhout, Roel Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies[J]. Advanced Photonics, 2021, 3(2): 024003
    Download Citation