• Acta Physica Sinica
  • Vol. 69, Issue 13, 136103-1 (2020)
Zhan-Gang Zhang1, Bing Ye2, Qing-Gang Ji2, Jin-Long Guo2, Kai Xi3, Zhi-Feng Lei1、*, Yun Huang1、*, Chao Peng1, Yu-Juan He1, Jie Liu2, and Guang-Hua Du2
Author Affiliations
  • 1Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China
  • 2Material Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 3Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
  • show less
    DOI: 10.7498/aps.69.20201796 Cite this Article
    Zhan-Gang Zhang, Bing Ye, Qing-Gang Ji, Jin-Long Guo, Kai Xi, Zhi-Feng Lei, Yun Huang, Chao Peng, Yu-Juan He, Jie Liu, Guang-Hua Du. Mechanisms of alpha particle induced soft errors in nanoscale static random access memories[J]. Acta Physica Sinica, 2020, 69(13): 136103-1 Copy Citation Text show less
    Schematic diagram of the test setup.
    Fig. 1. Schematic diagram of the test setup.
    α particle distribution on the silicon surface of the 65 nm SRAM.
    Fig. 2. α particle distribution on the silicon surface of the 65 nm SRAM.
    α particle distribution on the silicon surface of the 90 nm SRAM.
    Fig. 3. α particle distribution on the silicon surface of the 90 nm SRAM.
    Impact of initial data pattern on SEU cross section.
    Fig. 4. Impact of initial data pattern on SEU cross section.
    Reverse analysis results of the 65 nm SRAM: (a) Cross section; (b) memory area image.
    Fig. 5. Reverse analysis results of the 65 nm SRAM: (a) Cross section; (b) memory area image.
    TRIM simulation results: (a) The propagation trajectory of alpha particles in the device; (b) the alpha particle trajectory from the cross-sectional view of the device (the initial incident position of the particle is at the zero center).
    Fig. 6. TRIM simulation results: (a) The propagation trajectory of alpha particles in the device; (b) the alpha particle trajectory from the cross-sectional view of the device (the initial incident position of the particle is at the zero center).
    3 D simulation model of the 65 nm device.
    Fig. 7. 3 D simulation model of the 65 nm device.
    Deposited energy spectra in sensitive regions of devices at different incident angles.
    Fig. 8. Deposited energy spectra in sensitive regions of devices at different incident angles.
    Relationship between LET value and energy of α particle in silicon material.
    Fig. 9. Relationship between LET value and energy of α particle in silicon material.
    Relationship between single event upset cross section and critical energy at different incident angles.
    Fig. 10. Relationship between single event upset cross section and critical energy at different incident angles.
    Single event upset cross section at different incident angles.
    Fig. 11. Single event upset cross section at different incident angles.
    Schematic diagram of edge effect (not scaled)[20,21].
    Fig. 12. Schematic diagram of edge effect (not scaled)[20,21].
    α粒子源Am-241
    放射率/粒子·2π–1·min–15.73 × 105
    尺寸圆柱体, Φ18 mm, 1 mm厚
    Table 1.

    Parameters of the radioactive source being used.

    使用的放射源参数

    器件类型型号厂商工艺尺寸/nm测试容量/Mb工作电压/V硅片尺寸
    DDR-II SRAMCY7C1318CYPRESS651.1251.85 mm × 8 mm
    QDR-II SRAMCY7C1412CYPRESS65181.85 mm × 8 mm
    SRAMCY7C1019DCYPRESS9013.32 mm × 2 mm
    Table 2.

    Parameters of the devices under test.

    被测器件参数

    器件测试容量/Mb粒子注量率/cm–2·s–1测试时长SEU数量SEU截面/cm2·bit–1
    CY7 C1318(65 nm)1.1251.33 × 1037 min 52 s2042.76 × 10–10
    CY7 C1412(65 nm)181.33 × 1033 min 41 s16132.91 × 10–10
    CY7 C1019 D(90 nm)17.42 × 10216 h1272.83 × 10–12
    Table 3.

    Test results of SEU cross section.

    SEU截面测试结果

    α粒子发射率等级发射率/cm–2·h–165 nm SRAM软错误率/FIT·Mb–190 nm SRAM软错误率/FIT·Mb–1
    ULA~0.0013.03 × 1022.97
    Low Alpha (LA)~0.013.03 × 10329.7
    Uncontrolled Alpha~206.06 × 1065.94 × 104
    Table 4.

    The α particle emissivity level and corresponding soft error rate.

    α粒子发射率等级及对应的软错误率

    粒子种类4300 m海拔处的软错误率/FIT·Mb–1占比(4300 m海拔)北京海平面处的软错误率/FIT·Mb–1占比(北京海平面)
    全部2356100%429100%
    α粒子30312.86%30370.63%
    高能中子205387.14%12629.37%
    热中子00%00%
    Table 5.

    Soft error rates of the 65 nm SRAM at the experimental site with an altitude of 4300 m and sea level of Beijing city being used. The contribution rates of α particle, high energy neutron and thermal neutron are analyzed, respectively.

    65 nm SRAM在4300 m海拔试验地点及北京海平面使用时的软错误率及α粒子、高能中子和热中子贡献占比

    器件存储单元尺寸灵敏区尺寸灵敏区厚度/μm重离子LET阈值/ MeV·cm2·mg-1临界能量/keV
    65 nm SRAM1 μm × 0.5 μm0.2 μm × 0.19 μm0.450.22[19]22.5[19]
    Table 6. [in Chinese]
    Zhan-Gang Zhang, Bing Ye, Qing-Gang Ji, Jin-Long Guo, Kai Xi, Zhi-Feng Lei, Yun Huang, Chao Peng, Yu-Juan He, Jie Liu, Guang-Hua Du. Mechanisms of alpha particle induced soft errors in nanoscale static random access memories[J]. Acta Physica Sinica, 2020, 69(13): 136103-1
    Download Citation