• Matter and Radiation at Extremes
  • Vol. 5, Issue 5, 058401 (2020)
Jing Yang1, Wen Deng2, Qiang Li1, Xin Li1, Akun Liang1, Yuzhu Su1, Shixue Guan1, Junpu Wang1, and Duanwei He1、3、a)
Author Affiliations
  • 1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
  • 2Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
  • 3Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
  • show less
    DOI: 10.1063/5.0005395 Cite this Article
    Jing Yang, Wen Deng, Qiang Li, Xin Li, Akun Liang, Yuzhu Su, Shixue Guan, Junpu Wang, Duanwei He. Strength enhancement of nanocrystalline tungsten under high pressure[J]. Matter and Radiation at Extremes, 2020, 5(5): 058401 Copy Citation Text show less
    References

    [1] E. O. Hall. The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. B, 64, 747-753(1951).

    [2] N. J. Petch. The cleavage strength of polycrystals. J. Iron Steel Inst., 174, 25-28(1953).

    [3] R. W. Armstrong. The influence of polycrystal grain size on several mechanical properties of materials. Metall. Mater. Trans. B, 1, 1169-1176(1970).

    [4] A. H. Chokshi, A. Rosen, H. Gleiter, J. Karch. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr. Metall., 23, 1679-1683(1989).

    [5] J. Narayan. Size and interface control of novel nanocrystalline materials using pulsed laser deposition. J. Nanopart. Res., 2, 91-96(2000).

    [6] T. Yamasaki, T. G. Nieh, C. A. Schuh. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Metall., 46, 735-740(2002).

    [7] K. W. Jacobsen, J. Schiotz. A maximum in the strength of nanocrystalline copper. Science, 301, 1357-1359(2003).

    [8] D. M. Follstaedt, J. A. Knapp. Hall–Petch relationship in pulsed-laser deposited nickel films. J. Mater. Res., 19, 218-227(2004).

    [9] D. J. Benson, A. Mishra, M. A. Meyers. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci., 51, 427-556(2006).

    [10] X. Huang, N. Tsuji, N. Hansen. Hardening by annealing and softening by deformation in nanostructured metals. Science, 312, 249-251(2006).

    [11] X. Huang, K. Lu, L. Lu, X. Chen. Revealing the maximum strength in nanotwinned copper. Science, 323, 607-610(2009).

    [12] J. Xu, L. Zhu, L. Miyagi, H. Dong, X. Zhou, Z. Feng et al. High-pressure strengthening in ultrafine-grained metals. Nature, 579, 67-72(2020).

    [13] C. C. Koch, J. Narayan. The inverse Hall-Petch effect—Fact or artifact?. Mat. Res. Soc. Symp., 634, B5.1.1(2000).

    [14] M. Atzmon, D. Jang. Grain-size dependence of plastic deformation in nanocrystalline Fe. Appl. Phys., 93, 9282-9286(2003).

    [15] A. D. Westwood, I. C. Noyan, C. E. Murray. In-situ study of dynamic structural rearrangements during stress relaxation. Adv. X-Ray Anal., 38, 243-254(1995).

    [16] A. L. Ruoff, N. E. Christensen, C. O. Rodriguez. Pressure strengthening: A way to multimegabar static pressures. Phys. Rev. B, 52, 9121-9124(1995).

    [17] J. Badro, R. J. Hemley, G. Shen, D. Hausermann, H. Mao, P. Gillet, M. Hanfland. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures. Science, 276, 1242-1245(1997).

    [18] P. M. Bell, H. K. Mao, J. Xu. Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. J. Geophys. Res.: Solid Earth, 91, 4673-4676(1986).

    [19] M. Hanfland, D. Hausermann, A. P. Hammersley, A. N. Fitch, S. O. Svensson. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res., 14, 235-248(1996).

    [20] H. P. Liermann, S. K. Saxena, A. K. Singh, A. Jain. Strength of iron under pressure up to 55 GPa from X-ray diffraction line-width analysis. J. Phys. Chem. Solids, 67, 2197-2202(2006).

    [21] D. He, T. S. Duffy. X-ray diffraction study of the static strength of tungsten to 69 GPa. Phys. Rev. B, 73, 134106(2006).

    [22] Y. Wang, D. J. Weidner, M. T. Vaughan. Strength of diamond. Science, 266, 419-422(1994).

    [23] J. I. Langford. X-ray powder diffraction studies of vitromet samples. J. Appl. Crystallogr., 4, 164-168(1971).

    [24] K. W. Katahara, M. H. Manghnani, E. S. Fisher. Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys. J. Phys. F: Met. Phys., 9, 773-790(1978).

    [25] B. Li, Q. Li, L. Bai, L. Xiong, J. Hao, Y. Tang et al. Radial X-ray diffraction study of the static strength and texture of tungsten to 96 GPa. Solid State Commun., 269, 83-89(2018).

    [26] J. Hu, K. Lu, X. Sauvage, Y. N. Shi, G. Sha. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science, 355, 1292(2017).

    [27] K. Lu. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater., 1, 16019(2016).

    Jing Yang, Wen Deng, Qiang Li, Xin Li, Akun Liang, Yuzhu Su, Shixue Guan, Junpu Wang, Duanwei He. Strength enhancement of nanocrystalline tungsten under high pressure[J]. Matter and Radiation at Extremes, 2020, 5(5): 058401
    Download Citation