• Advanced Photonics
  • Vol. 1, Issue 2, 024001 (2019)
Weiqiang Ding1、*, Tongtong Zhu1、2, Lei-Ming Zhou2, and Cheng-Wei Qiu2、*
Author Affiliations
  • 1Harbin Institute of Technology, Department of Physics, Harbin, China
  • 2National University of Singapore, Department of Electrical and Computer Engineering, Singapore
  • show less
    DOI: 10.1117/1.AP.1.2.024001 Cite this Article Set citation alerts
    Weiqiang Ding, Tongtong Zhu, Lei-Ming Zhou, Cheng-Wei Qiu. Photonic tractor beams: a review[J]. Advanced Photonics, 2019, 1(2): 024001 Copy Citation Text show less
    References

    [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [2] A. Ashkin et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [3] A. Ashkin, J. M. Dziedzic. Optical trapping and manipulation of viruses and bacteria. Science, 235, 1517-1520(1987).

    [4] F. M. Fazal, S. M. Block. Optical tweezers study life under tension. Nat. Photonics, 5, 318-321(2011).

    [5] M. Koch, A. Rohrbach. Object-adapted optical trapping and shape-tracking of energy-switching helical bacteria. Nat. Photonics, 7, 680-690(2013).

    [6] Y. Pang et al. Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution. Nat. Nanotechnol., 9, 624-630(2014).

    [7] K. Svoboda et al. Direct observation of kinesin stepping by optical trapping interferometry. Nature, 365, 721-727(1993).

    [8] L. R. Liu et al. Building one molecule from a reservoir of two atoms. Science, 360, 900-903(2018).

    [9] J. Chan et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478, 89-92(2011).

    [10] C. H. Metzger. Cavity cooling of a microlever. Nature, 432, 1002-1005(2004).

    [11] A. Schliesser et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys., 5, 509-514(2009).

    [12] N. Descharmes et al. Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity. Phys. Rev. Lett., 110, 123601(2013).

    [13] M. Righini et al. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett., 100, 186804(2008).

    [14] M. L. Juan et al. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys., 5, 915-919(2009).

    [15] S. Sukhov, A. Dogariu. Non-conservative optical forces. Rep. Progr. Phys., 80, 112001(2017).

    [16] C. Zensen et al. Pushing nanoparticles with light—a femtonewton resolved measurement of optical scattering forces. APL Photonics, 1, 026102(2016).

    [17] A. Dogariu, S. Sukhov, J. J. Sáenz. Optically induced ‘negative forces’. Nat. Photonics, 7, 24-27(2013).

    [18] M. Nieto-Vesperinas. Optical torque: electromagnetic spin and orbital-angular-momentum conservation laws and their significance. Phys. Rev. A, 92, 043843(2015).

    [19] J. Ahn et al. Optically levitated nanodumbbell torsion balance and GHz nanomechanical rotor. Phys. Rev. Lett., 121, 033603(2018).

    [20] F. Borghese et al. Radiation torque and force on optically trapped linear nanostructures. Phys. Rev. Lett., 100, 163903(2008).

    [21] R. Reimann et al. GHz rotation of an optically trapped nanoparticle in vacuum. Phys. Rev. Lett., 121, 033602(2018).

    [22] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [23] H. Lina, O. J. F. Martin. Reversal of the optical force in a plasmonic trap. Opt. Lett., 33, 3001-3003(2008).

    [24] S.-H. Lee, Y. Roichman, D. G. Grier. Optical solenoid beams. Opt. Express, 18, 6988-6993(2010).

    [25] A. Mizrahi, Y. Fainman. Negative radiation pressure on gain medium structures. Opt. Lett., 35, 3405-3407(2010).

    [26] S. Sukhov, A. Dogariu. On the concept of ‘tractor beams’. Opt. Lett., 35, 3847-3849(2010).

    [27] J. Chen et al. Optical pulling force. Nat. Photonics, 5, 531-534(2011).

    [28] A. Novitsky, C.-W. Qiu, H. Wang. Single gradient less light beam drags particles as tractor beams. Phys. Rev. Lett., 107, 203601(2011).

    [29] P. L. Marston. Axial radiation force of a Bessel beam on a sphere and direction reversal of the force. J. Acoust. Soc. Am., 120, 3518-3524(2006).

    [30] P. L. Marston. Negative axial radiation forces on solid spheres and shells in a Bessel beam. J. Acoust. Soc. Am., 122, 3162-3165(2007).

    [31] H. Punzmann et al. Generation and reversal of surface flows by propagating waves. Nat. Phys., 10, 658-663(2014).

    [32] A. A. Gorlach et al. Matter-wave tractor beams. Phys. Rev. Lett., 118, 180401(2017).

    [33] Y. Harada, T. Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun., 124, 529-541(1996).

    [34] M. Nieto-Vesperinas, R. Gomez-Medina, J. J. Saenz. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A, 28, 54-60(2011).

    [35] J. M. Geffrin et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun., 3, 1171(2012).

    [36] R. Gómez-Medina et al. Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering anisotropy. Photonics Nanostruct. Fundam. Appl., 10, 345-352(2012).

    [37] A. Ashkin. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. J. Biophys., 61, 569-582(1992).

    [38] V. Kajorndejnukul et al. Linear momentum increase and negative optical forces at dielectric interface. Nat. Photonics, 7, 787-790(2013).

    [39] R. N. C. Pfeifer et al. Momentum of an electromagnetic wave in dielectric media. Rev. Mod. Phys., 79, 1197-1216(2007).

    [40] J. J. Sáenz. Optical forces: laser tractor beams. Nat. Photonics, 5, 514-515(2011).

    [41] Y. Roichman et al. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 013602(2008).

    [42] L. Carretero et al. Helical tractor beam: analytical solution of Rayleigh particle dynamics. Opt. Express, 23, 20529-20539(2015).

    [43] A. Novitsky, C.-W. Qiu, A. Lavrinenko. Material-independent and size-independent tractor beams for dipole objects. Phys. Rev. Lett., 109, 023902(2012).

    [44] Z. Xie, V. Armbruster, T. Grosjean. Axicon on a gradient index lens (AXIGRIN): integrated optical bench for Bessel beam generation from a point-like source. Appl. Opt., 53, 6103-6107(2014).

    [45] I. Moreno et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance. Opt. Lett., 40, 5451-5454(2015).

    [46] W. T. Chen et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light: Sci. Appl., 6, e16259(2017).

    [47] C. Pfeiffer, A. Grbic. Generating stable tractor beams with dielectric metasurfaces. Phys. Rev. B, 91, 115408(2015).

    [48] B. Liao et al. Cloaking core-shell nanoparticles from conducting electrons in solids. Phys. Rev. Lett., 109, 126806(2012).

    [49] S. Xu et al. Experimental demonstration of a free-space cylindrical cloak WITHOUT superluminal propagation. Phys. Rev. Lett., 109, 223903(2012).

    [50] N. Wang et al. Optimized optical “tractor beam” for core-shell nanoparticles. Opt. Lett., 39, 2399-2402(2014).

    [51] A. Novitsky et al. Pulling cylindrical particles using a soft-nonparaxial tractor beam. Sci. Rep., 7, 652(2017).

    [52] N. Wang et al. Dynamical and phase-diagram study on stable optical pulling force in Bessel beams. Phys. Rev. A, 87, 063812(2013).

    [53] J. Damková et al. Enhancement of the ‘tractor-beam’ pulling force on an optically bound structure. Light: Sci. Appl., 7, 17135(2018).

    [54] O. Brzobohatý et al. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam’. Nat. Photonics, 7, 123-127(2013).

    [55] S. Sukhov, A. Dogariu. Negative nonconservative forces: optical ‘tractor beams’ for arbitrary objects. Phys. Rev. Lett., 107, 203602(2011).

    [56] D. B. Ruffner, D. G. Grier. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett., 109, 163903(2012).

    [57] T. Čižmár et al. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett., 86, 174101(2005).

    [58] G. Wang et al. Nano-optical conveyor belt with waveguide-coupled excitation. Opt. Lett., 41, 528-531(2016).

    [59] T. Čižmár et al. Sub-micron particle organization by self-imaging of non-diffracting beams. New J. Phys., 8, 43(2006).

    [60] D. Schrader et al. An optical conveyor belt for single neutral atoms. Appl. Phys. B: Lasers Opt., 73, 819-824(2001).

    [61] G. Li et al. Wave propagation and Lorentz force density in gain chiral structures. Opt. Mater. Express, 6, 388-395(2016).

    [62] X. Bian, D. L. Gao, L. Gao. Tailoring optical pulling force on gain coated nanoparticles with nonlocal effective medium theory. Opt. Express, 25, 24566-24578(2017).

    [63] K. J. Webb, S. Shivanand. Negative electromagnetic plane-wave force in gain media. Phys. Rev. E, 84, 057602(2011).

    [64] K. J. Webb, S. Shivanand. Electromagnetic plane-wave forces on homogeneous material. J. Opt. Soc. Am. B, 29, 1904-1910(2012).

    [65] F. G. Mitri. Optical Bessel tractor beam on active dielectric Rayleigh prolate and oblate spheroids. J. Opt. Soc. Am. B, 34, 899-908(2017).

    [66] A. Novitsky, C.-W. Qiu. Pulling extremely anisotropic lossy particles using light without intensity gradient. Phys. Rev. A, 90, 053815(2014).

    [67] R. Alaee, J. Christensen, M. Kadic. Optical pulling and pushing forces in bilayer PT-symmetric structures. Phys. Rev. Appl., 9, 014007(2018).

    [68] R. Alaee et al. Optical force rectifiers based on PT-symmetric metasurfaces. Phys. Rev. B, 97, 195420(2018).

    [69] K. Ding et al. Realization of optical pulling forces using chirality. Phys. Rev. A, 89, 063825(2014).

    [70] D. E. Fernandes, M. G. Silveirinha. Optical tractor beam with chiral light. Phys. Rev. A, 91, 061801(2015).

    [71] M. Wang et al. Radiation pressure of active dispersive chiral slabs. Opt. Express, 23, 16546-16553(2015).

    [72] D. E. Fernandes, M. G. Silveirinha. Single-beam optical conveyor belt for chiral particles. Phys. Rev. Appl., 6, 014016(2016).

    [73] S. De Liberato. Light-matter decoupling in the deep strong coupling regime: the breakdown of the purcell effect. Phys. Rev. Lett., 112, 016401(2014).

    [74] M. Mansuripur. Optical manipulation: momentum exchange effect. Nat. Photonics, 7, 765-766(2013).

    [75] M. I. Petrov et al. Surface plasmon polariton assisted optical pulling force. Laser Photonics Rev., 10, 116-122(2016).

    [76] C.-W. Qiu et al. Photon momentum transfer in inhomogeneous dielectric mixtures and induced tractor beams. Light: Sci. Appl., 4, e278(2015).

    [77] P. W. Milonni, R. W. Boyd. Momentum of light in a dielectric medium. Adv. Opt. Photonics, 2, 519-553(2010).

    [78] S. M. Barnett. Resolution of the Abraham–Minkowski Dilemma. Phys. Rev. Lett., 104, 070401(2010).

    [79] V. Intaraprasonk, S. Fan. Optical pulling force and conveyor belt effect in resonator-waveguide system. Opt. Lett., 38, 3264-3267(2013).

    [80] T. Zhu et al. Mode conversion enables optical pulling force in photonic crystal waveguides. Appl. Phys. Lett., 111, 061105(2017).

    [81] T. Zhang et al. Reconfigurable optical manipulation by phase change material waveguides. Nanoscale, 9, 6895-6900(2017).

    [82] C. A. Ebongue et al. Generating a stationary infinite range tractor force via a multimode optical fibre. J. Opt., 19, 065401(2017).

    [83] P. Forgács, Á. Lukács, T. Romańczukiewicz. Plane waves as tractor beams. Phys. Rev. D, 88, 125007(2013).

    [84] T. Zhu et al. Optical pulling using evanescent mode in sub-wavelength channels. Opt. Express, 24, 18436-18444(2016).

    [85] N. K. Paul, B. A. Kemp. Optical pulling force on a particle near the surface of a dielectric slab waveguide. Opt. Eng., 55, 015106(2016).

    [86] M. Sonnleitner, M. Ritsch-Marte, H. Ritsch. Attractive optical forces from blackbody radiation. Phys. Rev. Lett., 111, 023601(2013).

    [87] S. A. Ramakrishna. Physics of negative refractive index materials. Rep. Progr. Phys., 68, 449-521(2005).

    [88] A. Salandrino, D. N. Christodoulides. Reverse optical forces in negative index dielectric waveguide arrays. Opt. Lett., 36, 3103-3105(2011).

    [89] A. V. Maslov. Resonant pulling of a microparticle using a backward surface wave. Phys. Rev. Lett., 112, 113903(2014).

    [90] J. Nemirovsky, M. C. Rechtsman, M. Segev. Negative radiation pressure and negative effective refractive index via dielectric birefringence. Opt. Express, 20, 8907-8914(2012).

    [91] A. Salandrino, D. N. Christodoulides. Negative index Clarricoats-Waldron waveguides for terahertz and far infrared applications. Opt. Express, 18, 3626-3631(2010).

    [92] A. V. Maslov, V. N. Astratov, M. I. Bakunov. Resonant propulsion of a microparticle by a surface wave. Phys. Rev. A, 87, 053848(2013).

    [93] A. A. Oliner, T. Tamir. Backward waves on isotropic plasma slabs. J. Appl. Phys., 33, 231-233(1962).

    [94] Y. Li et al. Giant resonant light forces in microspherical photonics. Light: Sci. Appl., 2, e64(2013).

    [95] A. S. Ang et al. Scattering forces within a left-handed photonic crystal. Sci. Rep., 7, 41014(2017).

    [96] T. Zhu et al. Self-induced backaction optical pulling force. Phys. Rev. Lett., 120, 123901(2018).

    [97] M. G. Scullion et al. Enhancement of optical forces using slow light in a photonic crystal waveguide. Optica, 2, 816-821(2015).

    [98] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 58, 2059-2062(1987).

    [99] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [100] H. Kosaka et al. Self-collimating phenomena in photonic crystals. Appl. Phys. Lett., 74, 1212-1214(1999).

    [101] S. Arnold, M. Lewittes. Size dependence of the photophoretic force. J. Appl. Phys., 53, 5314-5319(1982).

    [102] S. Rybalko, N. Magome, K. Yoshikawa. Forward and backward laser-guided motion of an oil droplet. Phys. Rev. E, 70, 046301(2004).

    [103] G. Wurm, O. Krauss. Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett., 96, 134301(2006).

    [104] M. Lewittes, S. Arnold, G. Oster. Radiometric levitation of micron sized spheres. Appl. Phys. Lett., 40, 455-457(1982).

    [105] V. G. Shvedov et al. Giant optical manipulation. Phys. Rev. Lett., 105, 118103(2010).

    [106] L. Lin et al. Opto-thermoelectric nanotweezers. Nat. Photonics, 12, 195-201(2018).

    [107] V. Shvedov et al. A long-range polarization-controlled optical tractor beam. Nat. Photonics, 8, 846-850(2014).

    [108] J. Lu et al. Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force. Phys. Rev. Lett., 118, 043601(2017).

    [109] O. Ilic et al. Exploiting optical asymmetry for controlled guiding of particles with light. ACS Photonics, 3, 197-202(2016).

    [110] J. Liu, H. L. Guo, Z. Y. Li. Self-propelled round-trip motion of Janus particles in static line optical tweezers. Nanoscale, 8, 19894-19900(2016).

    [111] H. Eskandarloo, A. Kierulf, A. Abbaspourrad. Light-harvesting synthetic nano- and micromotors: a review. Nanoscale, 9, 12218-12230(2017).

    [112] V. Sridhar, B.-W. Park, M. Sitti. Light-driven Janus hollow mesoporous TiO2-Au microswimmers. Adv. Funct. Mater., 28, 1704902(2018). https://doi.org/10.1002/adfm.v28.25

    [113] H. Zeng et al. Light-fueled microscopic walkers. Adv. Mater., 27, 3883-3887(2015).

    [114] D. E. Smalley et al. A photophoretic-trap volumetric display. Nature, 553, 486-490(2018).

    [115] F. Ding, A. Pors, S. I. Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep. Progr. Phys., 81, 026401(2018).

    [116] M. L. Tseng et al. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [117] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    CLP Journals

    [1] Zhen Che, Wenguo Zhu, Yaoming Huang, Yu Zhang, Linqing Zhuo, Pengpeng Fan, Zhibin Li, Huadan Zheng, Wenjin Long, Wentao Qiu, Yunhan Luo, Jun Zhang, Jinghua Ge, Jianhui Yu, Zhe Chen. Distance-controllable and direction-steerable opto-conveyor for targeting delivery[J]. Photonics Research, 2020, 8(7): 1124

    [2] Yuanjie Yang, Yu-Xuan Ren, Mingzhou Chen, Yoshihiko Arita, Carmelo Rosales-Guzmán. Optical trapping with structured light: a review[J]. Advanced Photonics, 2021, 3(3): 034001

    [3] Xi Xie, Xianyou Wang, Changjun Min, Haixiang Ma, Yunqi Yuan, Zhangyu Zhou, Yuquan Zhang, Jing Bu, Xiaocong Yuan. Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers[J]. Photonics Research, 2022, 10(1): 166

    [4] Fengya Lu, Lei Gong, Yan Kuai, Xi Tang, Yifeng Xiang, Pei Wang, Douguo Zhang. Controllable optofluidic assembly of biological cells using an all-dielectric one-dimensional photonic crystal[J]. Photonics Research, 2022, 10(1): 14

    Weiqiang Ding, Tongtong Zhu, Lei-Ming Zhou, Cheng-Wei Qiu. Photonic tractor beams: a review[J]. Advanced Photonics, 2019, 1(2): 024001
    Download Citation