• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011010 (2021)
Haixiao Zhao, Yan Guo, Peiming Li, Binglin Chen, and Baoqing Sun*
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/LOP202158.1011010 Cite this Article Set citation alerts
    Haixiao Zhao, Yan Guo, Peiming Li, Binglin Chen, Baoqing Sun. Investigation of Single-Pixel Imaging in Signal-to-Noise Ratio and Its Development at Special Wavelength[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011010 Copy Citation Text show less
    References

    [1] Mertz P, Gray F. A theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television[J]. The Bell System Technical Journal, 13, 464-515(1934). http://ieeexplore.ieee.org/document/6772951

    [2] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [3] Bennink R S, Bentley S J, Boyd R W. “Two-Photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002). http://europepmc.org/abstract/MED/12225140

    [4] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [5] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [6] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [7] Harwit M, Sloane N J A. Systematic errors[M]. //Harwit M, Sloane N J A. Hadamard transform optics, 146-180(1979).

    [8] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [9] Eldar Y C, Kutyniok G. Compressed sensing: theory and applications[M](2009).

    [10] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).

    [11] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://nar.oxfordjournals.org/external-ref?access_num=10.1109/MSP.2007.914730&link_type=DOI

    [12] Sampsell J B. Digital micromirror device and its application to projection displays[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 12, 3242-3246(1994). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4963584

    [13] Dudley D, Duncan W M, Slaughter J. Emerging digital micromirror device (DMD) applications[J]. Proceedings of SPIE, 4985, 14-25(2003).

    [14] Magalhães F, Araújo F M, Correia M V et al. Active illumination single-pixel camera based on compressive sensing[J]. Applied Optics, 50, 405-414(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ao-50-4-405

    [15] Lochocki B, Gambín A, Manzanera S et al. Single pixel camera ophthalmoscope[J]. Optica, 3, 1056-1059(2016).

    [16] Rousset F, Ducros N, Peyrin F et al. Time-resolved multispectral imaging based on an adaptive single-pixel camera[J]. Optics Express, 26, 10550-10558(2018). http://europepmc.org/abstract/MED/29715990

    [17] Zheng J, Jacobs E L. Video compressive sensing using spatial domain sparsity[J]. Optical Engineering, 48, 087006(2009). http://spie.org/Publications/Journal/10.1117/1.3206733

    [18] Edgar M P, Sun M J, Gibson G M et al. Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera[J]. Proceeedings of SPIE, 9922, 99221B(2016). http://proceedings.spiedigitallibrary.org/conference-proceedings-of-spie/9922/99221B/Real-time-3D-video-utilizing-a-compressed-sensing-time-of/10.1117/12.2239113.full

    [19] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017). http://europepmc.org/articles/PMC5471277/

    [20] Howland G A, Howell J C. Efficient high-dimensional entanglement imaging with a compressive-sensing double-pixel camera[J]. Physical Review X, 3, 011013(2013). http://arxiv.org/abs/1212.5530

    [21] Wiley W C, McLaren I H. Time-of-flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 26, 1150-1157(1955). http://www.onacademic.com/detail/journal_1000035967776510_ffa6.html

    [22] Cui Y, Schuon S, Chan D et al. 3D shape scanning with a time-of-flight camera[C]. //2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA., 1173-1180(2010).

    [23] Ganapathi V, Plagemann C, Koller D et al. Real time motion capture using a single time-of-flight camera[C]. //2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA., 755-762(2010).

    [24] Marr D, Poggio T. A computational theory of human stereo vision[J]. Readings in Cognitive Science, 534-547(1988). http://www.sciencedirect.com/science/article/pii/b9781483214467500467

    [25] Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]. //IJCAI’81: Proceedings of the 7th International Joint Conference on Artificial Intelligence, August 24, 1981, San Francisco, CA, United States, 2, 674-679(1981).

    [26] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013). http://europepmc.org/abstract/med/23687044

    [27] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016). http://www.ncbi.nlm.nih.gov/pubmed/27377197

    [28] Musarra G, Lyons A, Conca E et al. Non-line-of-sight three-dimensional imaging with a single-pixel camera[J]. Physical Review Applied, 12, 011002(2019). http://www.researchgate.net/publication/334555145_Non-Line-of-Sight_Three-Dimensional_Imaging_with_a_Single-Pixel_Camera

    [29] Zhang Z B, Zhong J G. Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels[J]. Optics Letters, 41, 2497-2500(2016).

    [30] Zhang Y W, Edgar M P, Sun B Q et al. 3D single-pixel video[J]. Journal of Optics, 18, 035203(2016).

    [31] Higham C F, Murray-Smith R, Padgett M J et al. Deep learning for real-time single-pixel video[J]. Scientific Reports, 8, 2369(2018). http://www.nature.com/articles/s41598-018-20521-y

    [32] Gibson G M, Sun B Q, Edgar M P et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 25, 2998-3005(2017). http://www.ncbi.nlm.nih.gov/pubmed/28241517

    [33] Edgar M P, Gibson G M, Bowman R W et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 10669(2015). http://www.ncbi.nlm.nih.gov/pubmed/26001092

    [34] Radwell N, Mitchell K J, Gibson G M et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014). http://www.opticsinfobase.org/abstract.cfm?uri=optica-1-5-285

    [35] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008). http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2989126

    [36] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014). http://www.nature.com/articles/nphoton.2014.139

    [37] Stantchev R I, Sun B Q, Hornett S M et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2, e1600190(2016).

    [38] Shrekenhamer D, Watts C M, Padilla W J. Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator[J]. Optics Express, 21, 12507-12518(2013).

    [39] Vallés A, He J H, Ohno S et al. Broadband high-resolution terahertz single-pixel imaging[J]. Optics Express, 28, 28868-28881(2020). http://arxiv.org/abs/2006.05877v2

    [40] Stantchev R I, Yu X, Blu T et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 11, 2535(2020). http://www.nature.com/articles/s41467-020-16370-x

    [41] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [42] Klein Y, Schori A, Dolbnya I P et al. X-ray computational ghost imaging with single-pixel detector[J]. Optics Express, 27, 3284-3293(2019).

    [43] Pelliccia D, Rack A, Scheel M et al. Erratum: experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 219902(2016).

    [44] Greenberg J, Krishnamurthy K, Brady D. Compressive single-pixel snapshot X-ray diffraction imaging[J]. Optics Letters, 39, 111-114(2014).

    [45] Bian L H, Suo J L, Situ G H et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 6, 24752(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4840436/

    [46] Amiot C, Ryczkowski P, Friberg A T et al. Supercontinuum spectral-domain ghost imaging[J]. Optics Letters, 43, 5025-5028(2018). http://www.ncbi.nlm.nih.gov/pubmed/30320826

    [47] Xiao Y, Zhou L N, Chen W. Direct single-step measurement of hadamard spectrum using single-pixel optical detection[J]. IEEE Photonics Technology Letters, 31, 845-848(2019). http://ieeexplore.ieee.org/document/8685198/references?signout=success

    [48] Tian N, Guo Q, Wang A et al. Fluorescence ghost imaging with pseudothermal light[J]. Optics Letters, 36, 3302-3304(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ol-36-16-3302

    [49] Mizuno T, Iwata T. Hadamard-transform fluorescence-lifetime imaging[J]. Optics Express, 24, 8202-8213(2016). http://www.opticsinfobase.org/abstract.cfm?uri=oe-24-8-8202

    [50] Ma J W. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 6, 199-203(2009).

    [51] Ma S, Liu Z T, Wang C L et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019). http://www.ncbi.nlm.nih.gov/pubmed/31052850

    [52] Shi D F, Yin K X, Huang J et al. Fast tracking of moving objects using single-pixel imaging[J]. Optics Communications, 440, 155-162(2019). http://www.sciencedirect.com/science/article/pii/S0030401819300987

    [53] Sun S, Lin H Z, Xu Y K et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics Express, 27, 27851-27861(2019). http://www.ncbi.nlm.nih.gov/pubmed/31684546

    [54] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401782

    [55] Zhao W G, Chen H, Yuan Y et al. Ultrahigh-speed color imaging with single-pixel detectors at low light level[J]. Physical Review Applied, 12, 034049(2019). http://www.researchgate.net/publication/336050743_Ultrahigh-Speed_Color_Imaging_with_Single-Pixel_Detectors_at_Low_Light_Level

    [56] Gariepy G, Krstajić N, Henderson R et al. Single-photon sensitive light-in-fight imaging[J]. Nature Communications, 6, 6021(2015). http://www.ncbi.nlm.nih.gov/pubmed/25626147

    [57] Jiang W J, Li X Y, Peng X L et al. Imaging high-speed moving targets with a single-pixel detector[J]. Optics Express, 28, 7889-7897(2020).

    [58] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010). http://www.ncbi.nlm.nih.gov/pubmed/20634840

    [59] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 101, 101108(2012).

    [60] Jiang S, Wang Y, Long T et al. Information security scheme based on computational temporal ghost imaging[J]. Scientific Reports, 7, 7676(2017).

    [61] Chen W, Chen X D. Ghost imaging for three-dimensional optical security[J]. Applied Physics Letters, 103, 221106(2013). http://scitation.aip.org/content/aip/journal/apl/103/22/10.1063/1.4836995

    [62] Caramazza P, Boccolini A, Buschek D et al. Neural network identification of people hidden from view with a single-pixel, single-photon detector[J]. Scientific Reports, 8, 11945(2018). http://www.nature.com/articles/s41598-018-30390-0

    [63] Hedayat A, Wallis W D. Hadamard matrices and their applications[J]. The Annals of Statistics, 6, 1184-1238(1978). http://www.onacademic.com/detail/journal_1000036013659410_7af5.html

    [64] Yuan J Y, Chen Y Y, Liu Z Z et al. Correlated imaging with partially coherent light for remote sensing[J]. Journal of Modern Optics, 64, 1708-1716(2017).

    [65] He Y H, Zhang A X, Li M F et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector[J]. APL Photonics, 5, 056102(2020). http://www.researchgate.net/publication/341146598_High-resolution_sub-sampling_incoherent_x-ray_imaging_with_a_single-pixel_detector

    [66] Candès E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 23, 969-985(2007). http://arxiv.org/abs/math/0611957v1

    [67] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 346, 589-592(2008).

    [68] Baraniuk R, Davenport M, DeVore R et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 28, 253-263(2008). http://bioinformatics.oxfordjournals.org/external-ref?access_num=10.1007/s00365-007-9003-x&link_type=DOI

    [69] Jiang S, Li X Y, Zhang Z X et al. Scan efficiency of structured illumination in iterative single pixel imaging[J]. Optics Express, 27, 22499-22507(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510541

    [70] Jiang S. Investigation of signal to noise ratio and application in single-pixel computatlional imaging[D], 39-56(2019).

    [71] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018). http://arxiv.org/abs/1709.01016

    [72] Khakimov R I, Henson B M, Shin D K et al. Ghost imaging with atoms[J]. Nature, 540, 100-103(2016).

    [73] He Y H, Huang Y Y, Zeng Z R et al. Single-pixel imaging with neutrons[J]. Science Bulletin, 66, 133-138(2021). http://www.sciencedirect.com/science/article/pii/S2095927320306265

    [74] Li S, Cropp F, Kabra K et al. Electron ghost imaging[J]. Physical Review Letters, 121, 114801(2018).

    [75] Sun S, Gu J H, Lin H Z et al. Gradual ghost imaging of moving objects by tracking based on cross correlation[J]. Optics Letters, 44, 5594-5597(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730129

    [76] Wang Y, Liu Y, Suo J et al. High speed computational ghost imaging via spatial sweeping[J]. Scientific Reports, 7, 45325(2017).

    [77] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    Haixiao Zhao, Yan Guo, Peiming Li, Binglin Chen, Baoqing Sun. Investigation of Single-Pixel Imaging in Signal-to-Noise Ratio and Its Development at Special Wavelength[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011010
    Download Citation