• Advanced Photonics
  • Vol. 5, Issue 2, 026001 (2023)
Mingxue Deng1、2、†, Xingzhong Cao3, Yangmin Tang1、2, Zhenzhen Zhou1、*, Lijia Liu4, Xiaofeng Liu5, Peng Zhang3, Lo-Yueh Chang6, Hao Ruan7, Xinjun Guo7, Jiacheng Wang1、2、8、9、*, and Qian Liu1、2、*
Author Affiliations
  • 1Chinese Academy of Sciences, Shanghai Institute of Ceramics, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, China
  • 2University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
  • 3Chinese Academy of Sciences, Institute of High Energy Physics, Beijing, China
  • 4Western University, Department of Chemistry, London, Ontario, Canada
  • 5Zhejiang University, School of Materials Science and Engineering, Hangzhou, China
  • 6Taiwan Synchrotron Radiation Centre, Hsinchu, China
  • 7Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Laboratory of Micro-Nano Optoelectronic Materials and Devices, Shanghai, China
  • 8North China University of Science and Technology, College of Materials Science and Engineering, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan, China
  • 9Taizhou University, School of Materials Science and Engineering, Taizhou, China
  • show less
    DOI: 10.1117/1.AP.5.2.026001 Cite this Article Set citation alerts
    Mingxue Deng, Xingzhong Cao, Yangmin Tang, Zhenzhen Zhou, Lijia Liu, Xiaofeng Liu, Peng Zhang, Lo-Yueh Chang, Hao Ruan, Xinjun Guo, Jiacheng Wang, Qian Liu. Gradient defects mediate negative thermal quenching in phosphors[J]. Advanced Photonics, 2023, 5(2): 026001 Copy Citation Text show less
    References

    [1] M. Zhao et al. Narrow-band emitters in LED backlights for liquid-crystal displays. Mater. Today, 40, 246-265(2020).

    [2] M. Fang et al. Evolutionary generation of phosphor materials and their progress in future applications for light-emitting diodes. Chem. Rev., 122, 11474-11513(2022).

    [3] J. Liao et al. Thermally boosted upconversion and downshifting luminescence in Sc2(MoO4)3:Yb/Er with two-dimensional negative thermal expansion. Nat. Commun., 13, 2090(2022).

    [4] J. J. Joos et al. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence. Nat. Commun., 11, 3647(2020).

    [5] S. Liu et al. Wide range zero-thermal-quenching ultralong phosphorescence from zero-dimensional metal halide hybrids. Nat. Commun., 11, 4649(2020).

    [6] T. Hu et al. Glass crystallization making red phosphor for high-power warm white lighting. Light Sci. Appl., 10, 56(2021).

    [7] Y. H. Kim et al. A zero-thermal-quenching phosphor. Nat. Mater., 16, 543-550(2017).

    [8] H. Zhu et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun., 5, 4312(2014).

    [9] Y. Tang et al. A multicolor-emitted phosphor for temperature sensing and multimode dynamic anti-counterfeiting. J. Am. Ceram. Soc., 105, 6241-6251(2022).

    [10] X. Zhang et al. Abnormal thermal quenching effect of high power density excited fluorescent materials. Chinese J. Lumin., 42, 1458-1481(2021).

    [11] Y. Wei et al. Strategies for designing antithermal-quenching red phosphors. Adv. Sci., 7, 1903060(2020).

    [12] X. Xu et al. Advanced multi-laser-beam parallel heating system for rapid high temperature treatment. J. Inorg. Mater., 37, 107-112(2021).

    [13] G. Liu, Z. Xia. Modulation of thermally stable photoluminescence in Cr3+-based near-infrared phosphors. J. Phys. Chem. Lett., 13, 5001-5008(2022).

    [14] D. Wen et al. Disorder–order conversion-induced enhancement of thermal stability of pyroxene near-infrared phosphors for light-emitting diodes. Angew. Chem. Int. Ed., 61, e202204411(2022).

    [15] Q. Liu et al. Research progress on high throughput parallel synthesis of micro-nano powders libraries. J. Inorg. Mater., 36, 1237-1246(2021).

    [16] X. Ou et al. High-resolution X-ray luminescence extension imaging. Nature, 590, 410-415(2021).

    [17] C. Wang et al. Variation from zero to negative thermal quenching of phosphor with assistance of defect states. Inorg. Chem., 60, 19365-19372(2021).

    [18] M. Zhao et al. Tailoring of white luminescence in a NaLi3SiO4:Eu2+ phosphor containing broad-band defect-induced charge-transfer emission. Adv. Mater., 33, 2101428(2021).

    [19] X. Zhou et al. Multi-responsive deep-ultraviolet emission in praseodymium-doped phosphors for microbial sterilization. Sci. China Mater., 65, 1103-1111(2021).

    [20] Y. Li et al. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev., 45, 2090-2136(2016).

    [21] C. Cheng et al. Designing high-performance LED phosphors by controlling the phase stability via a heterovalent substitution strategy. Adv. Opt. Mater., 8, 1901608(2020).

    [22] Y. Wei et al. Anti-thermal-quenching Bi3+ luminescence in a cyan-emitting Ba2ZnGe2O7:Bi phosphor based on zinc vacancy. Laser Photonics Rev., 15, 2000048(2021).

    [23] X. Fan et al. Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps. J. Mater. Chem. C, 6, 2978-2982(2018).

    [24] B. Ravel, M. Newville. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat., 12, 537-541(2005).

    [25] G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15-50(1996).

    [26] S. Shen et al. Highly active Si sites enabled by negative valent Ru for electrocatalytic hydrogen evolution in LaRuSi. Angew. Chem. Int. Ed., 61, e202206460(2022).

    [27] R. Hu et al. Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi3+: toward application for optical information display. Mater. Chem. Front., 5, 6891-6903(2021).

    [28] R. Hu et al. UV–Vis-NIR broadband-photostimulated luminescence of LiTaO3:Bi3+ long-persistent phosphor and the optical storage properties. Chem. Eng. J., 392, 124807(2020).

    [29] M. Nikl et al. Emission and storage properties of LiTaO3:Tb3+ phosphor. J. Appl. Phys., 79, 2853-2856(1996).

    [30] M. Zhao et al. Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Sci. Adv., 5, eaav0363(2019).

    [31] L. Zhang et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed., 60, 18821-18829(2021).

    [32] G. Liu et al. Cation-assisted formation of porous TiO2–x nanoboxes with high grain boundary density as efficient electrocatalysts for lithium–oxygen batteries. ACS Catal., 8, 1720-1727(2018).

    [33] J. Zhang et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal., 1, 985-992(2018).

    [34] M. Deng et al. Novel co-doped Y2GeO5:Pr3+,Tb3+: deep trap level formation and analog binary optical storage with submicron information points. Adv. Opt. Mater., 9, 2002090(2021).

    [35] X. Wang et al. Solar-blind ultraviolet-C persistent luminescence phosphors. Nat. Commun., 11, 2040(2020).

    [36] K. Van den Eeckhout et al. Revealing trap depth distributions in persistent phosphors. Phys. Rev. B, 87, 045126(2013).

    [37] D. J. Keeble et al. Identification of lead vacancy defects in lead halide perovskites. Nat. Commun., 12, 5566(2021).

    [38] J. Wiktor et al. Positron annihilation spectroscopy investigation of vacancy clusters in silicon carbide: combining experiments and electronic structure calculations. Phys. Rev. B, 89, 155203(2014).

    [39] J. Wiktor et al. Two-component density functional theory within the projector augmented-wave approach: accurate and self-consistent computations of positron lifetimes and momentum distributions. Phys. Rev. B, 92, 125113(2015).

    [40] F. Tuomisto, I. Makkonen. Defect identification in semiconductors with positron annihilation: experiment and theory. Rev. Mod. Phys., 85, 1583-1631(2013).

    [41] X. Ning et al. Modification of source contribution in PALS by simulation using Geant4 code. Nucl. Instrum. Methods Phys. Res. Sect. B, 397, 75-81(2017).

    [42] D. J. Keeble et al. Identification of A- and B-site cation vacancy defects in perovskite oxide thin films. Phys. Rev. Lett., 105, 226102(2010).

    [43] D. J. Keeble et al. Cation vacancies in ferroelectric PbTiO3 and Pb(Zr,Ti)O3: a positron annihilation lifetime spectroscopy study. Phys. Rev. B, 76, 144109(2007).

    [44] H. Ouhbi, J. Wiktor. Polaron formation and hopping in tantalate perovskite oxides: NaTaO3 and KTaO3. Phys. Rev. B, 104, 235158(2021).

    [45] M. Liu et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photonics, 15, 379-385(2021).

    [46] Z. Zhang et al. Tantalum-based electrocatalyst for polysulfide catalysis and retention for high-performance lithium-sulfur batteries. Matter, 3, 920-934(2020).

    [47] H. Yuan et al. Understanding negative thermal expansion of Zn2GeO4 through local structure and vibrational dynamics. Inorg. Chem., 60, 1499-1505(2021).

    [48] F. X. Zhang et al. Ion irradiation induced strain and structural changes in LiTaO3 perovskite. J. Phys. Condens. Matter, 33, 185402(2021).

    [49] M. Si et al. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode–electrolyte interphase. Adv. Sci., 7, 1902538(2020).

    [50] E. Song et al. Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor. Nat. Commun., 13, 2166(2022).

    [51] C. Linderälv et al. Luminescence quenching via deep defect states: a recombination pathway via oxygen vacancies in Ce-doped YAG. Chem. Mater., 33, 73-80(2021).

    [52] Z. Li et al. Spin engineering of single-site metal catalysts. Innovation, 3, 100268(2022).

    [53] Z. Zhi et al. Facile synthesis of zinc indium oxide nanofibers distributed with low content of silver for superior antibacterial activity. Small Struct., 2200291(2023).

    Mingxue Deng, Xingzhong Cao, Yangmin Tang, Zhenzhen Zhou, Lijia Liu, Xiaofeng Liu, Peng Zhang, Lo-Yueh Chang, Hao Ruan, Xinjun Guo, Jiacheng Wang, Qian Liu. Gradient defects mediate negative thermal quenching in phosphors[J]. Advanced Photonics, 2023, 5(2): 026001
    Download Citation