• Photonics Research
  • Vol. 13, Issue 6, 1497 (2025)
Naiquan Yan1,2,†, Feng Shi3,†, Xiaomeng Xue1,†, Kenan Zhang2..., Cheng Huo1,2 and Menglu Chen1,2,4,5,*|Show fewer author(s)
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Westlake Institute for Optoelectronics, Hangzhou 311421, China
  • 3Laboratory of Science and Technology on Integrated Logistics Support, Changsha 410073, China
  • 4State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
  • 5National Key Laboratory on Near-Surface Detection, Beijing 100012, China
  • show less
    DOI: 10.1364/PRJ.546383 Cite this Article Set citation alerts
    Naiquan Yan, Feng Shi, Xiaomeng Xue, Kenan Zhang, Cheng Huo, Menglu Chen, "Cavity-enhanced infrared quantum dot homojunction arrays," Photonics Res. 13, 1497 (2025) Copy Citation Text show less
    References

    [1] C. P. Bacon, Y. Mattley, R. DeFrece. Miniature spectroscopic instrumentation: applications to biology and chemistry. Rev Sci. Instrum., 75, 1-16(2004).

    [2] G. Elmasry, M. Kamruzzaman, D. W. Sun. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit. Rev. Food Sci. Nutr., 52, 999-1023(2012).

    [3] J. X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [4] L. Cabernard, L. Roscher, C. Lorenz. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. Environ. Sci. Technol., 52, 13279-13288(2018).

    [5] P. Edwards, C. Zhang, B. Zhang. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin. Sci. Rep., 7, 12224(2017).

    [6] D. Romanini, M. Chenevier, S. Kassi. Optical–feedback cavity–enhanced absorption: a compact spectrometer for real–time measurement of atmospheric methane. Appl. Phys., 83, 659-667(2006).

    [7] A. J. S. McGonigle, T. C. Wilkes, T. D. Pering. Smartphone spectrometers. Sensors, 18, 223(2018).

    [8] M. Manley. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chem. Soc. Rev., 43, 8200-8214(2014).

    [9] S. Kang, Z. Qian, V. Rajaram. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy. Adv. Opt. Mater., 7, 1801236(2019).

    [10] F. Hase, M. Frey, T. Blumenstock. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin. Atmos. Meas. Tech., 8, 3059-3068(2015).

    [11] M. J. Baker, J. Trevisan, P. Bassan. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc., 9, 1771-1791(2014).

    [12] I. Amenabar, S. Poly, M. Goikoetxea. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun., 8, 14402(2017).

    [13] Z. Yang, T. Albrow-Owen, W. Cai. Miniaturization of optical spectrometers. Science, 371, eabe0722(2021).

    [14] B. Redding, S. F. Liew, R. Sarma. Compact spectrometer based on a disordered photonic chip. Nat. Photonics, 7, 746-751(2013).

    [15] H. Meng, Y. Gao, X. Wang. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection. Light Sci. Appl., 13, 121(2024).

    [16] G. Cai, Y. Li, Y. Zhang. Compact angle-resolved metasurface spectrometer. Nat. Mater., 23, 71-78(2024).

    [17] H. Li, L. Bian, K. Gu. A near-infrared miniature quantum dot spectrometer. Adv. Opt. Mater., 9, 2100376(2021).

    [18] S. H. Kong, D. D. L. Wijngaards, R. F. Wolffenbuttel. Infrared micro-spectrometer based on a diffraction grating. Sens. Actuators A, 92, 88-95(2001).

    [19] E. Arvin, H. Wu, G. de Graaf. Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter. Opt. Express, 20, 489-507(2012).

    [20] X. Xue, H. Lv, Y. Qiu. Thermally stable high carrier mobility nanocomposite infrared photodetector. APL Photonics, 9, 046101(2024).

    [21] Y. Qiu, Y. Yu, S. Wang. Advances in quantum dot direct photolithographic patterning. ACS Mater. Lett., 6, 3176-3189(2024).

    [22] Y. Qiu, X. Zhou, X. Tang. Micro spectrometers based on materials nanoarchitectonics. Mater. (Basel), 16, 2253(2023).

    [23] N. Yan, Y. Qiu, X. He. Plasmonic enhanced nanocrystal infrared photodetectors. Materials, 16, 3216(2023).

    [24] Y. Qiu, N. Yan, H. Yao. Plasmon-enhanced HgTe colloidal quantum dot infrared photodetectors. Infrared Phys. Technol., 135, 104980(2023).

    [25] J. Wang, B. Pan, Z. Wang. Single-pixel p-graded-n junction spectrometers. Nat. Commun., 15, 1773(2024).

    [26] Y. Xiao, S. Wei, J. Xu. Superconducting single-photon spectrometer with 3D-printed photonic-crystal filters. ACS Photonics, 9, 3450-3456(2022).

    [27] Y. Ye, J. Zhang, Y. Xu. Miniature spectrometer based on gold nanorod-polyvinylpyrrolidone film. ACS Photonics, 11, 512-519(2024).

    [28] E. Huang, Q. Ma, Z. Liu. Etalon array reconstructive spectrometry. Sci. Rep., 7, 40693(2017).

    [29] J. Bao, M. G. Bawendi. A colloidal quantum dot spectrometer. Nature, 523, 67-70(2015).

    [30] X. Zhu, L. Bian, H. Fu. Broadband perovskite quantum dot spectrometer beyond human visual resolution. Light Sci. Appl., 9, 73(2020).

    [31] A. Chu, B. Martinez, S. Ferré. HgTe nanocrystals for SWIR detection and their integration up to the focal plane array. ACS Appl. Mater. Interfaces, 11, 33116-33123(2019).

    [32] S. Ahn, J. Y. Shang, S. K. Patel. Intercalated graphene and colloidal quantum dots for multispectral photodetection. Funct. Mater., 34, 2409523(2024).

    [33] Z. Yang, T. Albrow-Owen, H. Cui. Single nanowire spectrometers. Science, 365, 1017-1020(2019).

    [34] J. Liu, P. Liu, T. Shi. Flexible and broadband colloidal quantum dots photodiode array for pixel-level X-ray to near-infrared image fusion. Nat. Commun., 14, 5352(2023).

    [35] R. Alchaar, A. Khalili, N. Ledos. Focal plane array based on HgTe nanocrystals with photovoltaic operation in the short-wave infrared. Appl. Phys. Lett., 123, 111103(2023).

    [36] S. Keuleyan, E. Lhuillier, V. Brajuskovic. Mid-infrared HgTe colloidal quantum dot photodetectors. Nat. Photonics, 5, 489-493(2011).

    [37] X. Lan, M. Chen, M. H. Hudson. Quantum dot solids showing state-resolved band-like transport. Nat. Mater., 19, 323-329(2020).

    [38] X. Xue, M. Chen, Y. Luo. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light Sci. Appl., 12, 2(2023).

    [39] H. Zhang, J. C. Peterson, P. Guyot-Sionnest. Intraband transition of HgTe nanocrystals for long-wave infrared detection at 12  μm. ACS Nano, 17, 7530-7538(2023).

    [40] X. Xue, Q. Hao, M. Chen. Very long wave infrared quantum dot photodetector up to 18  μm. Light Sci. Appl., 13, 89(2024).

    [41] Y. Luo, S. Zhang, X. Tang. Resonant cavity-enhanced colloidal quantum-dot dual-band infrared photodetectors. J. Mater. Chem., 10, 8218-8225(2022).

    [42] M. Faraji-Dana, E. Arbabi, A. Arbabi. Compact folded metasurface spectrometer. Nat. Commun., 9, 4196(2018).

    [43] M. Chen, X. Xue, T. Qin. Universal homojunction design for colloidal quantum dot infrared photodetectors. Adv. Mater. Technol., 8, 2300315(2023).

    [44] Y.-C. Tai, S. An, P.-R. Huang. Transfer-printing-enabled GeSn flexible resonant-cavity-enhanced photodetectors with strain-amplified mid-infrared optical responses. Nanoscale, 15, 7745-7754(2023).

    [45] S. Ghosh, K.-C. Lin, C.-H. Tsai. Resonant-cavity-enhanced responsivity in germanium-on-insulator photodetectors. Opt. Express, 28, 23739-23747(2020).

    [46] O. Ouellette, N. Hossain, B. R. Sutherland. Optical resonance engineering for infrared colloidal quantum dot photovoltaics. ACS Energy Lett., 1, 852-857(2016).

    [47] F. L. Pedrotti, L. M. Pedrotti, L. S. Pedrotti. Introduction to Optics(2017).

    [48] S. Yuan, D. Naveh, K. Watanabe. A wavelength-scale black phosphorus spectrometer. Nat. Photonics, 15, 601-607(2021).

    [49] C. Yao, K. Xu, W. Zhang. Integrated reconstructive spectrometer with programmable photonic circuits. Nat. Commun., 14, 6376(2023).

    [50] J. Meng, J. J. Cadusch, K. B. Crozier. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett., 20, 320-328(2020).

    [51] L. Huang, R. Luo, X. Liu. Spectral imaging with deep learning. Light Sci. Appl., 11, 61(2022).

    [52] Z. Wang, Z. Yu. Spectral analysis based on compressive sensing in nanophotonic structures. Opt. Express, 22, 25608-25614(2014).

    [53] X.-L. Wang, Y. Chen, Y. Chu. Spectrum reconstruction with filter-free photodetectors based on graded-band-gap perovskite quantum dot heterojunctions. ACS Appl. Mater. Interfaces, 14, 14455-14465(2022).

    [54] J. Wen, L. Hao, C. Gao. Deep learning-based miniaturized all-dielectric ultracompact film spectrometer. ACS Photonics, 10, 225-233(2022).

    [55] C. Yao, M. Chen, T. Yan. Broadband picometer-scale resolution on-chip spectrometer with reconfigurable photonics. Light Sci. Appl., 12, 156(2023).

    [56] C. C. Chang, H. Y. Lin. Spectrum reconstruction for on-chip spectrum sensor array using a novel blind nonuniformity correction method. IEEE Sens. J., 12, 2586-2592(2012).

    [57] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [58] M. Yao, Z. Xiong, L. Wang. Spectral-depth imaging with deep learning based reconstruction. Opt. Express, 27, 38312-38325(2019).

    [59] L. Kades, J. M. Pawlowski, A. Rothkopf. Spectral reconstruction with deep neural networks. Phys. Rev., 102, 096001(2020).

    [60] C. A. T. Dos Santos, M. Lopo, R. N. Páscoa. A review on the applications of portable near-infrared spectrometers in the agro-food industry. Appl. Spectrosc., 67, 1215-1233(2013).

    [61] K. B. Beć, J. Grabska, H. W. Siesler. Handheld near-infrared spectrometers: where are we heading?. NIR News, 31, 28-35(2020).

    [62] G. Y. Belay, W. Hoving, A. Putdervan. Miniaturized broadband spectrometer based on a three-segment diffraction grating for spectral tissue sensing. Opt. Lasers Eng., 134, 106157(2020).

    [63] Y. M. Eltagoury, Y. M. Sabry, D. A. Khalil. All-silicon double-cavity Fourier-transform infrared spectrometer on-chip. Adv. Mater. Technol., 4, 1900441(2019).

    [64] T. Yang, M. AhmedAizaz, G. Zhang. Miniaturized spectrometers based on graded photonic crystal films. Opt. Express, 32, 25830-25838(2024).