• Journal of Infrared and Millimeter Waves
  • Vol. 41, Issue 3, 551 (2022)
Jiang-Wei YAN1, Xiao-Dong ZHANG1, Wei ZHOU2, Wan-Li MA2, Tao HU2, Niang-Juan YAO2, Lin JIANG2, and Zhi-Ming HUANG2、3、4、*
Author Affiliations
  • 1Department of Applied Physics,Donghua University,Shanghai 201620,China
  • 2State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 3Key Laboratory of Space Active Opto-Electronics Technology,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • 4Hangzhou Institute for Advanced Study,University of Chinese Academy of Sciences,Hangzhou 310024,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2022.03.005 Cite this Article
    Jiang-Wei YAN, Xiao-Dong ZHANG, Wei ZHOU, Wan-Li MA, Tao HU, Niang-Juan YAO, Lin JIANG, Zhi-Ming HUANG. Room-temperature THz detection via EIW effect based on graphite nanosheet[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 551 Copy Citation Text show less
    References

    [1] F Bonaccorso, Z Sun, T Hasan et al. Graphene photonics and optoelectronics. Nature Photonics, 4, 611-622(2010).

    [2] A C Ferrari, F Bonaccorso, V Fal'ko et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 7, 4598-4810(2015).

    [3] D Suzuki, T Okamoto, J Li et al. Terahertz and infrared response assisted by heat localization in nanoporous graphene. Carbon, 173, 403-409(2021).

    [4] J M Dawlaty, S Shivaraman, M Chandrashekhar et al. Measurement of ultrafast carrier dynamics in epitaxial graphene. Applied Physics Letters, 92, 042116(2008).

    [5] D Brida, A Tomadin, C Manzoni et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat Commun, 4, 1987(2013).

    [6] F N Xia, T Mueller, Y M Lin et al. Ultrafast graphene photodetector. Nat. Nanotechnol, 4, 839-843(2009).

    [7] T Mueller, F N A Xia, P Avouris. Graphene photodetectors for high-speed optical communications. Nature Photonics, 4, 297-301(2010).

    [8] M Liu, X B Yin, E Ulin-Avila et al. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [9] H Li, M Yan, W Wan et al. Graphene-Coupled Terahertz Semiconductor Lasers for Enhanced Passive Frequency Comb Operation. Adv Sci (Weinh), 6, 1900460(2019).

    [10] A N Grigorenko, M Polini, K S Novoselov. Graphene plasmonics. Nature Photonics, 6, 749-758(2012).

    [11] Z P Sun, T Hasan, F Torrisi et al. Graphene Mode-Locked Ultrafast Laser. Acs Nano, 4, 803-810(2010).

    [12] X T Gan, R J Shiue, Y D Gao et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photonics, 7, 883-887(2013).

    [13] A Pospischil, M Humer, M M Furchi et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photonics, 7, 892-896(2013).

    [14] A Principi, G Vignale, M Carrega et al. Impact of disorder on Dirac plasmon losses. Physical Review, B, 88, 1405(2013).

    [15] V Ryzhii, M Ryzhii. Graphene bilayer field-effect phototransistor for terahertz and infrared detection. Physical Review B, 79, 5311(2009).

    [16] M Dyakonov, M Shur. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices, 43, 380-387(1996).

    [17] A Tomadin, M Polini. Theory of the plasma-wave photoresponse of a gated graphene sheet. Physical Review B, 88, 5426(2013).

    [18] D Basko. Applied physics. A photothermoelectric effect in graphene. Science, 334, 610-611(2011).

    [19] X Cai, A B Sushkov, R J Suess et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat Nanotechnol, 9, 814-819(2014).

    [20] Y Zhai, Y Xiang, W Yuan et al. Fabrication of Graphene Nanomesh FET Terahertz Detector. Micromachines (Basel), 12, 641(2021).

    [21] C Liu, L Wang, X Chen et al. Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection. Carbon, 130, 233-240(2018).

    [22] Z Huang, J Tong, J Huang et al. Room-temperature photoconductivity far below the semiconductor bandgap. Adv Mater, 26, 6294-6598(2014).

    [23] Z Huang, W Zhou, J Tong et al. Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection. Adv Mater, 28, 112-117(2016).

    [24] M Sakowicz, M B Lifshits, O A Klimenko et al. Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. Journal of Applied Physics, 110, 054512(2011).

    [25] W Knap, M Dyakonov, D Coquillat et al. Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications. Journal of Infrared, Millimeter, and Terahertz Waves, 30, 1319-1337(2009).

    [26] R Tauk, F Teppe, S Boubanga et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Applied Physics Letters, 89, 253511(2006).

    [27] L Vicarelli, M S Vitiello, D Coquillat et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater, 11, 865-871(2012).

    [28] S Castilla, B Terres, M Autore et al. Fast and Sensitive Terahertz Detection Using an Antenna-Integrated Graphene pn Junction. Nano Lett, 19, 2765-2773(2019).

    [29] C Wu, W Zhou, N Yao et al. Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector. Applied Physics Express, 12, 052013(2019).

    [30] Q Weng, S Komiyama, L Yang et al. Imaging of nonlocal hot-electron energy dissipation via shot noise. Science, 360, 775-778(2018).

    [31] T Kampfrath, L Perfetti, F Schapper et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys Rev Lett, 95, 187403(2005).

    [32] A Z Alzahrani, G P Srivastava. Gradual changes in electronic properties from graphene to graphite: first-principles calculations. J Phys Condens Matter, 21, 495503(2009).

    [33] A Stange, C Sohrt, L X Yang et al. Hot electron cooling in graphite: Supercollision versus hot phonon decay. Physical Review B, 92, 184303(2015).

    [34] M Asgari, E Riccardi, O Balci et al. Chip-Scalable, Room-Temperature, Zero-Bias, Graphene-Based Terahertz Detectors with Nanosecond Response Time. ACS Nano, 15, 17966-17976(2021).

    [35] A Zak, M A Andersson, M Bauer et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett, 14, 5834-5838(2014).

    [36] L Viti, A R Cadore, X Yang et al. Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics, 10, 89-98(2020).

    [37] D Suzuki, T Okamoto, J Li et al. Terahertz and infrared response assisted by heat localization in nanoporous graphene. Carbon, 173, 403-409(2021).

    Jiang-Wei YAN, Xiao-Dong ZHANG, Wei ZHOU, Wan-Li MA, Tao HU, Niang-Juan YAO, Lin JIANG, Zhi-Ming HUANG. Room-temperature THz detection via EIW effect based on graphite nanosheet[J]. Journal of Infrared and Millimeter Waves, 2022, 41(3): 551
    Download Citation