• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 5, 1330010 (2014)
Elijah Yew1, Christopher Rowlands2, and Peter T. C. So1、2、3、4、*
Author Affiliations
  • 1Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way CREATE Tower, Singapore 138602
  • 2Department of Biological Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
  • 3Department of Mechanical Engineering Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge MA 02139, USA
  • 4GR Harrison Spectroscopy Laboratory 77 Massachusetts Ave, Cambridge MA 02139, USA
  • show less
    DOI: 10.1142/s1793545813300103 Cite this Article
    Elijah Yew, Christopher Rowlands, Peter T. C. So. Application of multiphoton microscopy in dermatological studies: A mini-review[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1330010 Copy Citation Text show less
    References

    [1] S. J. Lin, S. H. Jee, C. Y. Dong, "Multiphoton microscopy: A new paradigm in dermatological imaging," Eur. J. Dermatol. 17, 361–366 (2007).

    [2] B. R. Masters, P. T. So, E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405–2412 (1997).

    [3] K. Schenke-Layland, I. Riemann, O. Damour, U. A. Stock, K. Koenig, "Two-photon microscopes and in vivo multiphoton tomographs — Powerful dicagnostic tools for tissue engineering and drug delivery," Adv. Drug Deliv. Rev. 58, 878–896 (2006).

    [4] B. G. Wang, K. Koenig, K. J. Halbhuber, "Twophoton microscopy of deep intravital tissues and its merits in clinical research," J. Microscopy-Oxford 238, 1–20 (2010).

    [5] K. Koenig, M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hoefer, R. Bueckle, M. Schwarz, I. Riemann, F. Stracke, V. Huck, C. Gorzelanny, S. W. Schneider, "5D-intravital tomography as a novel tool for non-invasive in-vivo analysis of human skin," Proc. SPIE 7555, 75551I75551–75551I75556 (2010).

    [6] R. Cicchi, F. S. Pavone, "Non-linear fluorescence lifetime imaging of biological tissues," Analy. Bioanal. Chem. 400, 2687–2697 (2011).

    [7] S. Seidenari, F. Arginelli, S. Bassoli, J. Cautela, P. M. W. French, M. Guanti, D. Guardoli, K. Konig, C. Talbot, C. Dunsby, "Multiphoton laser microscopy and fluorescence lifetime imaging for the evaluation of the skin," Dermatol. Res. Prac. 2012, 1–8 (2012).

    [8] K. Koenig, "Clinical multiphoton FLIM tomography," Proc. SPIE 8226, 822601–822612 (2012).

    [9] P. J. Campagnola, C.-Y. Dong, "Second harmonic generation microscopy: Principles and applications to disease diagnosis," Laser Photon. Rev. 5, 13–26 (2011).

    [10] S. W. Perry, R. M. Burke, E. B. Brown, "Twophoton and second harmonic microscopy in clinical and translational cancer research," Ann. Biomed. Eng. 40, 277–291 (2012).

    [11] K. Konig, A. Ehlers, I. Riemann, S. Schenkl, R. Buckle, M. Kaatz, "Clinical two-photon microendoscopy," Microsc. Res. Tech. 70, 398–402 (2007).

    [12] K. Koenig, "Multiphoton tomography for tissue engineering," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6858, 685801– 685807 (2008).

    [13] K. Koenig, J. Mueller, M. Hoefer, C. Mueller, M. Weinigel, R. Bueckle, P. Elsner, M. Kaatz, B. Messerschmidt, "Invited review: Two-photon scanning systems for clinical high-resolution in vivo tissue imaging," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6860, 6860141– 6860146 (2008).

    [14] K. Koenig, R. Bueckle, M. Weinigel, P. Elsner, M. Kaatz, "Clinical multiphoton tomography and clinical two-photon microendoscopy," Proc. SPIE 7183, 7183191–7183199 (2009).

    [15] K. Koenig, R. Bueckle, M. Weinigel, J. Koehler, P. Elsner, M. Kaatz, "In vivo multiphoton tomography in skin aging studies," Proc. SPIE-The International Society for Optical Engineering 7161, 716101–716109 (2009).

    [16] K. Koenig, "New developments in multimodal clinical multiphoton tomography," Proc. SPIE 7903, 7903051–7903058 (2011).

    [17] R. R. Anderson, J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13–19 (1981).

    [18] B. Masters, B. Chance, "Redox confocal imaging: Intrinsic fluorescent probes of cellular metabolism," Fluorescent and Luminescent Probes for Biological Activity, 44–56 (1993).

    [19] B. Chance, "Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria," Circ. Res. 38, I31–38 (1976).

    [20] A. Pena, M. Strupler, T. Boulesteix, M. Schanne- Klein, "Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy," Opt. Express 13, 6268–6274 (2005).

    [21] T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, W. S. Warren, "Pump-probe imaging differentiates melanoma from melanocytic nevi," Sci. Transl. Med. 3, 1–19 (2011).

    [22] D. Mitra, X. Luo, A. Morgan, J. Wang, M. P. Hoang, J. Lo, C. R. Guerrero, J. K. Lennerz, M. C. Mihm, J. A. Wargo, K. C. Robinson, S. P. Devi, J. C. Vanover, J. A. D'Orazio, M. McMahon, M. W. Bosenberg, K. M. Haigis, D. A. Haber, Y. Wang, D. E. Fisher, "An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background," Nature 491, 449– 453 (2012).

    [23] Z. Lai, J. Kerimo, Y. Mega, C. A. Dimarzio, "Stepwise multiphoton activation fluorescence reveals a new method of melanin detection," J. Biomed. Opt. 18, 0612251–0612257 (2013).

    [24] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, J. G. Fujimoto, "Determination of the refractive index of highly scattering human tissue by optical coherence tomography," Opt. Lett. 20, 2258–2260 (1995).

    [25] W. Lo, Y. Sun, S. J. Lin, S. H. Jee, C. Y. Dong, "Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar," J. Biomed. Opt. 10, 0340061–0340065 (2005).

    [26] R. M. Tyrrell, S. M. Keyse, "New trends in photobiology the interaction of UVA radiation with cultured cells," J. Photochem. Photobiol. B: Biol. 4, 349–361 (1990).

    [27] S. M. Keyse, R. M. Tyrrell, "Induction of the heme oxygenase gene in human skin fibroblasts by hydrogen peroxide and UVA (365 nm) radiation: Evidence for the involvement of the hydroxyl radical," Carcinogenesis 11, 787–791 (1990).

    [28] P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, J. G. White, "Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells," Proc. Natl. Acad. Sci. USA 96, 6255–6260 (1999).

    [29] H. J. Koester, D. Baur, R. Uhl, S. W. Hell, "Ca2t fluorescence imaging with pico- and femtosecond two-photon excitation: Signal and photodamage," Biophys. J. 77, 2226–2236 (1999).

    [30] K. Konig, P. T. So, W. W. Mantulin, B. J. Tromberg, E. Gratton, "Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress," J. Microsc. 183, 197– 204 (1996).

    [31] K. Konig, T. W. Becker, P. Fischer, I. Riemann, K. J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113–115 (1999).

    [32] Y. Sako, A. Sekihata, Y. Yanagisawa, M. Yamamoto, Y. Shimada, K. Ozaki, A. Kusumi, "Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1," J. Microsc. 185, 9–20 (1997).

    [33] A. Schonle, S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325– 327 (1998).

    [34] W. Denk, M. Sugimori, R. Llinas, "Two types of calcium response limited to single spines in cerebellar Purkinje cells," Proc. Natl. Acad. Sci. USA 92, 8279–8282 (1995).

    [35] S. L. Jacques, D. J. McAuliffe, I. H. Blank, J. A. Parrish, "Controlled removal of human stratum corneum by pulsed laser," J. Invest. Dermatol. 88, 88–93 (1987).

    [36] V. Pustovalov, "Initiation of explosive boiling and optical breakdown as a result of the action of laser pulses on melanosome in pigmented biotissues," Quantum Electron. 25, 1055–1059 (1995).

    [37] C. Buehler, K. H. Kim, C. Y. Dong, B. R. Masters, P. T. So, "Innovations in two-photon deep tissue microscopy," IEEE Eng. Med. Biol. Mag. 18, 23– 30 (1999).

    [38] B. R. Masters, P. T. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, E. Gratton, "Mitigating thermal mechanical damage potential during twophoton dermal imaging," J. Biomed. Opt. 9, 1265– 1270 (2004).

    [39] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73–76 (1990).

    [40] D. W. Piston, B. R. Masters, W. W. Webb, "Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy," J. Microsc. 178, 20–27 (1995).

    [41] L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, P. T. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161–024016110 (2005).

    [42] A. J. Radosevich, M. B. Bouchard, S. A. Burgess, B. R. Chen, E. M. Hillman, "Hyperspectral in vivo two-photon microscopy of intrinsic contrast," Opt. Lett. 33, 2164–2166 (2008).

    [43] J. Chen, A. Lee, J. Zhao, H. Wang, H. Lui, D. I. McLean, H. Zeng, "Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastic tissue components under two-photon excitation," Skin Res. Technol. 15, 418–426 (2009).

    [44] H. G. Breunig, H. Studier, K. Koenig, "Excitationwavelength dependence of multiphoton excitation of fluorophores of human skin in vivo," Proc. SPIE 7548, 7548061–7548065 (2010).

    [45] Y. Yu, A. M. D. Lee, H. Wang, S. Tang, J. Zhao, H. Lui, H. Zeng, "Imaging-guided two-photon excitation- emission-matrix measurements of human skin tissues," J. Biomed. Opt. 17, 0770041– 0770048 (2012).

    [46] J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. C. M. Sterenborg, H. C. Gerritsen, "Three-dimensional multiphoton autofluorescence spectral imaging of live tissues," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6191, 619101–619109 (2006).

    [47] J. A. Palero, H. S. de Bruijn, A. v. d. P. van den Heuvel, H. J. C. M. Sterenborg, H. C. Gerritsen, "Spectrally-resolved multiphoton imaging of postmortem biopsy and in-vivo mouse skin tissues," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6442, 644211–6442110 (2007).

    [48] K. Konig, I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432–439 (2003).

    [49] W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, C. Biskup, "Fluorescence lifetime imaging by time-correlated single-photon counting," Microsc. Res. Tech. 63, 58–66 (2004).

    [50] R. Patalay, C. Talbot, Y. Alexandrov, M. O. Lenz, S. Kumar, S. Warren, I. Munro, M. A. Neil, K. Konig, P. M. French, A. Chu, G. W. Stamp, C. Dunsby, "Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas," PLoS One 7, 434601–434609 (2012).

    [51] R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, M. A. Neil, K. Konig, P. M. French, A. Chu, G. W. Stamp, C. Dunsby, "Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels," Biomed. Opt. Express 2, 3295–3308 (2011).

    [52] K. Konig, M. Speicher, M. J. Kohler, R. Scharenberg, M. Kaatz, "Clinical application of multiphoton tomography in combination with highfrequency ultrasound for evaluation of skin diseases," J. Biophotonics 3, 759–773 (2010).

    [53] G. Breunig, M. Weinigel, M. E. Darvin, J. Lademann, K. Koenig, "Clinical multiphoton and CARS microscopy," Proc. SPIE 8226, 8226231– 8226237 (2012).

    [54] D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, S. W. Warren, "Two-color, two-photon, and excitedstate absorption microscopy," J. Biomed. Opt. 12, 0540041–0540048 (2007).

    [55] T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, W. S. Warren, "Pump-probe imaging differentiates melanoma from melanocytic nevi," Sci. Trans. Med. 3, 1–19 (2011).

    [56] W.-L. Chen, C.-K. Chou, M.-G. Lin, Y.-F. Chen, S.-H. Jee, H.-Y. Tan, T.-H. Tsai, K.-H. Kim, D. Kim, P. T. C. So, S.-J. Lin, C.-Y. Dong, "Singlewavelength reflected confocal and multiphoton microscopy for tissue imaging," J. Biomed. Opt. 14, 0540261–0540268 (2009).

    [57] S. Yazdanfar, Y. Y. Chen, P. T. C. So, L. H. Laiho, "Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues," Micros. Res. Tech. 70, 628–633 (2007).

    [58] K. Koenig, M. Weinigel, H. G. Breunig, A. Gregory, P. Fischer, M. Kellner-Hoefer, R. Bueckle, "Current developments in clinical multiphoton tomography," Proc. SPIE 7569, 7569151–7569157 (2010).

    [59] K. Koenig, M. Speicher, M. J. Koehler, R. Scharenberg, M. Kaatz, "Clinical application of multiphoton tomography in combination with highfrequency ultrasound for evaluation of skin diseases," J. Biophotonics 3, 759–773 (2010).

    [60] U. Leiter, C. Garbe, "Epidemiology of melanoma and nonmelanoma skin cancer — The role of sunlight," Adv. Exp. Med. Biol. 624, 89–103 (2008).

    [61] R. Marks, "An overview of skin cancers — incidence and causation," Cancer 75, 607–612 (1995).

    [62] K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stucker, K. Hoff- mann, "Femtosecond two-photon excited fluorescence of melanin," Photochem. Photobiol. 70, 146–151 (1999).

    [63] K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stucker, K. Hoffmann, "Fluorescence studies of melanin by stepwise two-photon femtosecond laser excitation," J. Fluoresc. 10, 275–281 (2000).

    [64] M. C. Skala, J. M. Squirrell, K. M. Vrotsos, V. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues," Cancer Res. 65, 1180–1186 (2005).

    [65] M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron- Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, N. Ramanujam, "In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia," J. Biomed. Opt. 12, 1–19 (2007).

    [66] M. C. Skala, K. M. Riching, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, J. G. White, N. Ramanujam, "In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia," Proc. Nat. Acad. Sci. USA 104, 19494– 19499 (2007).

    [67] J. W. Wilson, S.Degan,T.Mitropoulos,M.A. Selim, J. Y. Zhang, W. S. Warren, "In vivo pump-probe microscopy of melanoma and pigmented lesions," Proc. SPIE 8226, 8226021–8226028 (2012).

    [68] D. Entenberg, L. Aranda, Y. Li, R. Toledo-Crow, D. Schaer, Y. Li, "Multimodal microscopy of immune cells and melanoma for longitudinal studies," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6081, 608101– 6081012 (2006).

    [69] R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, F. S. Pavone, "Multidimensional non-linear laser imaging of basal cell carcinoma," Opt. Express 15, 10135–10148 (2007).

    [70] I. Riemann, E. Dimitrow, M. T. Kaatz, J. Fluhr, P. Elsner, J. Kobow, K. Konig, "In vivo multiphoton tomography of inflammatory tissue and melanoma," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 5686, 97–104 (2005).

    [71] K. Koenig, I. Riemann, A. Ehlers, R. Bueckle, E. Dimitrow, M. Kaatz, J. Fluhr, P. Elsner, "In vivo multiphoton tomography of skin cancer," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6089, 118–124 (2006).

    [72] K. Zhang, W. Zhang, C.-Y. Yang, H. Yang, "Bipolar cellular morphology of malignant melanoma in unstained human melanoma skin tissue," J. Biomed. Opt. 14, 0240421–0240429 (2009).

    [73] J. Paoli, M. Smedh, A.-M. Wennberg, M. B. Ericson, "Multiphoton laser scanning microscopy on non-melanoma skin cancer: Morphologic features for future non-invasive diagnostics," J. Invest. Dermatol. 128, 1248–1255 (2008).

    [74] M. B. Ericson, J. Paoli, C. Ljungblad, A. Odu, M. Smedh, A.-M. Wennberg, "Two-photon microscopy of non-melanoma skin cancer: Initial experience and diagnostic criteria ex vivo," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6630, 663001–663008 (2007).

    [75] E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, M. Kaatz, "Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma," J. Invest. Dermatol. 129, 1752–1758 (2009).

    [76] R. Patalay, C. Talbot, I. Munro, H. G. Breunig, K. Koenig, Y. Alexandrov, S. Warren, M. A. A. Neil, P. M. W. French, A. Chu, G. W. Stamp, C. Dunsby, "Fluorescence lifetime imaging of skin cancer," Proc. SPIE 7883, 788301–788307 (2011).

    [77] R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, H. G. Breunig, K. Koenig, S. Warren, M. A. A. Neil, P. M. W. French, A. Chu, G. W. Stamp, C. Dunsby, "Non-invasive imaging of skin cancer with fluorescence lifetime imaging using two photon tomography," Proc. SPIE 8087, 808718–808718 (2011).

    [78] I. Riemann, A. Ehlers, R. Le Harzic, E. Dimitrow, M. Kaatz, P. Elsner, R. Bueckle, K. Koenig, "Noninvasive analysis/diagnosis of human normal and melanoma skin tissues with two-photon FLIM in vivo," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6842, 6842051– 6842055 (2008).

    [79] V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F. S. Pavone, T. Lotti, "Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: First experiences," J. Eur. Acad. Dermatol. Venereology 23, 314–316 (2009).

    [80] F. Arginelli, M. Manfredini, S. Bassoli, C. Dunsby, P. French, K. Koenig, C. Magnoni, G. Ponti, C. Talbot, S. Seidenari, "High resolution diagnosis of common nevi by multiphoton laser tomography and fluorescence lifetime imaging," Skin Res. Technol. 19, 194–204 (2013).

    [81] E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. Koenig, M. Kaatz, "Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis," Exp. Dermatol. 18, 509–515 (2009).

    [82] S. Y. Xiong, J. G. Yang, J. Zhuang, "Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation," Laser Phys. 21 (2011).

    [83] O. Chernyavskiy, L. Vannucci, P. Bianchini, F. Difato, M. Saieh, L. Kubinova, "Imaging of mouse experimental melanoma in vivo and ex vivo by combination of confocal and nonlinear mcroscopy," Microsc. Res. Tech. 72, 411–423 (2009).

    [84] K. Teuchner, S. Mory, D. Leupold, "A mobile, intensified femtosecond fiber laser based TPF spectrometer for early diagnosis of malignant melanoma," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 5516, 63–71 (2004).

    [85] Q. Wan, B. E. Applegate, "Multiphoton coherence domain molecular imaging with pump-probe optical coherence microscopy," Opt. Lett. 35, 532–534 (2010).

    [86] J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, L. V. Wang, "Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy," J. Biomed. Opt. 11, 0340321–0340324 (2006).

    [87] N. Vogler, S. Heuke, D. Akimov, I. Latka, F. Kluschke, H. J. Roewert-Huber, J. Lademann, B. Dietzek, J. Popp, "Discrimination of skin diseases using the multimodal imaging approach," Proc. SPIE 8427, 8427101–8427108 (2012).

    [88] S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, C.-K. Sun, "In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy," IEEE J. Sel. Top. Quant. 16, 8231–8242 (2010).

    [89] S. Takeuchi, W. G. Zhang, K. Wakamatsu, S. Ito, V. J. Hearing, K. H. Kraemer, D. E. Brash, "Melanin acts as a cause an atypical potent UVB photosensitizer to mode of cell death in murine skin," Proc. Nat. Acad. Sci. USA 101, 15076– 15081 (2004).

    [90] D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, L. Hong, J. D. Simon, W. S. Warren, "Two-color excited-state absorption imaging of melanins — art. no. 642402," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6424, 424021– 424027 (2007).

    [91] D. Fu, T. Ye, T. E. Matthews, J. Grichnik, L. Hong, J. D. Simon, W. S. Warren, "Probing skin pigmentation changes with transient absorption imaging of eumelanin and pheomelanin," J. Biomed. Opt. 13, 0540361–0540367 (2008).

    [92] T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, W. S. Warren, "In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature," Biomed. Opt. Express 2, 1576–1583 (2011).

    [93] D. Leupold, M. Scholz, G. Stankovic, J. Reda, S. Buder, R. Eichhorn, G. Wessler, M. Stuecker, K. Hoffmann, J. Bauer, C. Garbe, "The stepwise twophoton excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes," Pigment Cell & Melanoma Res. 24, 438–445 (2011).

    [94] R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O'Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, F. S. Pavone, "Multidimensional custom-made non-linear microscope: From ex-vivo to in-vivo imaging," Appl. Phys. B-Lasers and Opt. 92, 359–365 (2008).

    [95] R. Eichhorn, G. Wessler, M. Scholz, D. Leupold, G. Stankovic, S. Buder, M. Stuecker, K. Hoffmann, "Early diagnosis of melanotic melanoma based on laser-induced melanin fluorescence," J. Biomed. Opt. 14, 0340331–0340337 (2009).

    [96] T. B. Krasieva, F. Liu, C.-H. Sun, Y. Kong, M. Balu, F. L. Meyskens, B. J. Tromber, "Two-photon excited fluorescence spectroscopy and imaging of melanin in-vitro and in-vivo," Proc. SPIE 8226, 822621–822627 (2012).

    [97] R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, M. A. A. Neil, K. Koenig, P. M. W. French, A. Chu, G. W. Stamp, C. Dunsby, "Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels," Biomed. Opt. Express 2, 3295–3308 (2011).

    [98] R. Cicchi, S. Sestini, V. De Giorgi, D. Massi, T. Lotti, F. S. Pavone, "Multidimensional two-photon imaging of diseased skin," Proc. Society of Photo- Optical Instrumentation Engineers (SPIE) 6859, 6859031–68590311 (2008).

    [99] R. Cicchi, S. Sestini, V. De Giorgi, D. Stambouli, P. Carli, D. Massi, T. Lotti, F. S. Pavone, "Nonlinear laser imaging of skin lesions," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6633, 663301–6633012 (2007).

    [100] S. Seidenari, F. Arginelli, S. Bassoli, J. Cautela, A. M. Cesinaro, M. Guanti, D. Guardoli, C. Magnoni, M. Manfredini, G. Ponti, K. Koenig, "Diagnosis of BCC by multiphoton laser tomography," Skin Res. Technol. 19, E297–E304 (2013).

    [101] S. Seidenari, F. Arginelli, C. Dunsby, P. French, K. Koenig, C. Magnoni, M. Manfredini, C. Talbot, G. Ponti, "Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: Morphologic features for non-invasive diagnostics," Exp. Dermatol. 21, 831–836 (2012).

    [102] A. Alex, J. Weingast, M. Weinigel, M. Kellner- Hoefer, R. Nemecek, M. Binder, H. Pehamberger, K. Koenig, W. Drexler, "Three-dimensional multiphoton/ optical coherence tomography for diagnostic applications in dermatology," J. Biophotonics 6, 352–362 (2013).

    [103] M. Ulrich, M. Klemp, M. E. Darvin, K. Konig, J. Lademann,M. C.Meinke, "In vivo detection of basal cell carcinoma: Comparison of a reflectance confocal microscope and a multiphoton tomograph," J. Biomed. Opt. 18, 612291–612297 (2013).

    [104] M. Manfredini, F. Arginelli, C. Dunsby, P. French, C. Talbot, K. Koenig, G. Pellacani, G. Ponti, S. Seidenari, "High-resolution imaging of basal cell carcinoma: A comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy," Skin Res. Technol. 19, E433–E443 (2013).

    [105] C. Hoeller, S. K. Richardson, L. G. Ng, T. Valero, M. Wysocka, A. H. Rook, W. Weninger, "In vivo imaging of cutaneous T-cell lymphoma migration to the skin," Cancer Res. 69, 2704–2708 (2009).

    [106] R. Cicchi, S. Sestini, V. De Giorgi, D. Stambouli, P. Carli, D. Massi, F. S. Pavone, "Time-resolved multiphoton imaging of basal cell carcinoma," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6442, 644211–644219 (2007).

    [107] I. Riemann, A. Ehlers, D. Dill-Mueller, S. Martin, K. Koenig, "Multiphoton tomography of skin tumors after ALA application," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6424, 6424051–6424056 (2007).

    [108] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, "Two-photon luminescence imaging of cancer cells usingmolecularly targeted gold nanorods," Nano Lett. 7, 941–945 (2007).

    [109] J. Park, A. Estrada, J. A. Schwartz, P. Diagaradjane, S. Krishnan, A. K. Dunn, J. W. Tunnell, "Intra-organ biodistribution of gold nanoparticles using intrinsic two-photon-induced photoluminescence," Lasers Surg. Med. 42, 630–639 (2010).

    [110] P. Puvanakrishnan, P. Diagaradjane, S. M. S. Kazmi, A. K. Dunn, S. Krishnan, J. W. Tunnell, "Narrow band imaging of squamous cell carcinoma tumors using topically delivered anti-EGFR antibody conjugated gold nanorods," Lasers Surg. Med. 44, 310–317 (2012).

    [111] S.-J. Lin, S.-H. Jee, C.-J. Kuo, R. Wu, Jr., W.-C. Lin, J.-S. Chen, Y.-H. Liao, C.-J. Hsu, T.-F. Tsai, Y.-F. Chen, C.-Y. Dong, "Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging," Opt. Lett. 31, 2756–2758 (2006).

    [112] S.-J. Lin, C.-J.Hsu,R.Wu, Jr., C.-J.Kuo, J.-S. Chen, J.-Y. Chan, W.-C. Lin, S.-H. Jee, C.-Y. Dong, "Quantitativemultiphoton imaging for guiding basalcell carcinoma removal," Proc. Society of Photo- Optical Instrumentation Engineers (SPIE) 6424, 6424041–64240411 (2007).

    [113] C.-C. Wang, F.-C. Li, W.-C. Lin, Y.-F. Chen, S.-J. Chen, S.-J. Lin, C.-Y. Dong, "Early development of cutaneous cancer revealed by intravital nonlinear optical microscopy," Appl. Phys. Lett. 97, 1137021–1137023 (2010).

    [114] C.-C. Wang, F.-C. Li, S.-J. Lin, W. Lo, C.-Y. Dong, "Utilizing nonlinear optical microscopy to investigate the development of early cancer in nude mice in vivo — art. no. 66300Y," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 6630, 663001–663008 (2007).

    [115] J. M. Levitt, M. E. McLaughlin-Drubin, K. Muenger, I. Georgakoudi, "Automated biochemical, morphological, and organizational assessment of precancerous changes from endogenous twophoton fluorescence images," PLoS One 6, 1–11 (2011).

    [116] D. Kantere, S. Guldbrand, J. Paoli, M. Goksor, D. Hanstorp, A.-M. Wennberg, M. Smedh, M. B. Ericson, "Anti-stokes fluorescence from endogenously formed protoporphyrin IX implications for clinical multiphoton diagnostics," J. Biophotonics 6, 409–415 (2013).

    [117] O. Nadiarnykh, G. Thomas, J. Van Voskuilen, H. J. C. M. Sterenborg, H. C. Gerritsen, "Carcinogenic damage to deoxyribonucleic acid is induced by nearinfrared laser pulses in multiphoton microscopy via combination of two- and three-photon absorption," J. Biomed. Opt. 17, 1160241–1160247 (2012).

    [118] R. Le Harzic, M. Weinigel, I. Riemann, K. Konig, B. Messerschmidt, "Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens," Opt. Express 16, 20588– 20596 (2008).

    [119] J. Zhao, J. Chen, Y. Yang, S. Zhuo, X. Jiang, W. Tian, X. Ye, L. Lin, S. Xie, "Jadassohn-Pellizzari anetoderma: Study of multiphoton microscopy based on two-photon excited fluorescence and second harmonic generation," Eur. J. Dermatol. 19, 570–575 (2009).

    [120] K. Lu, J. Chen, S. Zhuo, L. Zheng, X. Jiang, X. Zhu, J. Zhao, "Multiphoton laser scanning microscopy of localized scleroderma," Skin Res. Technol. 15, 489–495 (2009).

    [121] X. Wu, S. Zhuo, J. Chen, N. Liu, "Real-time in vivo imaging collagen in lymphedematous skin using multiphoton microscopy," Scanning 33, 463–467 (2011).

    [122] J.-H. Lee, S.-Y. Chen, C.-H. Yu, S.-W. Chu, L.-F. Wang, C.-K. Sun, B.-L. Chiang, "Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis," J. Biomed. Opt. 14, 0140081–01400815 (2009).

    [123] M. J.Koehler, S. Zimmermann, S. Springer,P. Elsner, K. Koenig, M. Kaatz, "Keratinocyte morphology of human skin evaluated by in vivo multiphoton laser tomography," Skin Res. Technol. 17, 479–486 (2011).

    [124] V. Huck, C. Gorzelanny, K. Thomas, C. Mess, V. Dimitrova, M. Schwarz, I. Riemann, V. Niemeyer, T. A. Luger, K. Koenig, S. W. Schneider, "Intravital multiphoton tomography as an appropriate tool for non-invasive in vivo analysis of human skin affected with Atopic Dermatitis," Proc. SPIE 7883, 788301– 788306 (2011).

    [125] M. J. Koehler, M. Speicher, S. Lange-Asschenfeldt, E. Stockfleth, S. Metz, P. Elsner, M. Kaatz, K. Koenig, "Clinical application of multiphoton tomography in combination with confocal laser scanning microscopy for in vivo evaluation of skin diseases," Exp. Dermatol. 20, 589–594 (2011).

    [126] K. Koenig, M. Speicher, R. Bueckle, J. Reckfort, G. McKenzie, J. Welzel, M. J. Koehler, P. Elsner, M. Kaatz, "Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders," Proc. SPIE 7554, 755421–755426 (2010).

    [127] S. J. Lin, W. Lo, Y. Sun, S. H. Jee, C. Y. Dong, "Multiphoton fluorescence and second harmonic generation microscopy of different skin states," Proc. Society of Photo-Optical Instrumentation Engineers (SPIE) 5686, 67–72 (2005).

    [128] A. A. Ghazaryan, J.-Y. Tseng, W. Lo, Y.-F. Chen, V. Hovhanissyan, S.-J. Chen, H.-Y. Tan, C.-Y. Dong, "Multiphoton imaging and quantification of tissue glycation," Proc. SPIE 7895, 7895091– 7895095 (2011).

    [129] J.-Y. Tseng, A. A. Ghazaryan, W. Lo, Y.-F. Chen, V. Hovhannisyan, S.-J. Chen, H.-Y. Tan, C.-Y. Dong, "Multiphoton spectral microscopy for imaging and quantification of tissue glycation," Biomed. Opt. Express 2, 218–230 (2011).

    [130] S. C. Gunawardana, R. K. P. Benninger, D. W. Piston, "Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes," Am. J. Physiol. Endocrinol. Metab. 296, 323–332 (2009).

    [131] S.-J. Lin, R. Wu, Jr., H.-Y. Tan, W. Lo, W.-C. Lin, T.-H. Young, C.-J. Hsu, J.-S. Chen, S.-H. Jee, C.-Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation micros

    Elijah Yew, Christopher Rowlands, Peter T. C. So. Application of multiphoton microscopy in dermatological studies: A mini-review[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1330010
    Download Citation