• Photonics Research
  • Vol. 11, Issue 12, 2042 (2023)
Houan Teng1, Jinzhan Zhong1,2, Jian Chen1,2, Xinrui Lei1,2, and Qiwen Zhan1,2,*
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Zhangjiang Laboratory, Shanghai 201204, China
  • show less
    DOI: 10.1364/PRJ.499485 Cite this Article Set citation alerts
    Houan Teng, Jinzhan Zhong, Jian Chen, Xinrui Lei, Qiwen Zhan, "Physical conversion and superposition of optical skyrmion topologies," Photonics Res. 11, 2042 (2023) Copy Citation Text show less
    References

    [1] B. Göbel, I. Mertig, O. A. Tretiakov. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep., 895, 1-28(2021).

    [2] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [3] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni. Skyrmion lattice in a chiral magnet. Science, 323, 915-919(2009).

    [4] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, Y. Tokura. Real-space observation of a two-dimensional skyrmion crystal. Nature, 465, 901-904(2010).

    [5] D. Foster, C. Kind, P. J. Ackerman, J. S. B. Tai, M. R. Dennis, I. I. Smalyukh. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Phys., 15, 655-659(2019).

    [6] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, G. Bartal. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [7] T. J. Davis, D. Janoschka, P. Dreher, B. Frank, F.-J. M. Z. Heringdorf, H. Giessen. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [8] L. Du, A. Yang, A. V. Zayats, X. Yuan. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [9] X. Lei, A. Yang, P. Shi, Z. Xie, L. Du, A. V. Zayats, X. Yuan. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies. Phys. Rev. Lett., 127, 237403(2021).

    [10] X. Lei, Q. Zhan. Topological charge constrained photonic skyrmion defects in split plasmonic vortices. ACS Photon., 10, 3551-3557(2023).

    [11] X. Lei, L. Du, X. Yuan, Q. Zhan. Metastability of photonic spin meron lattices in the presence of perturbed spin-orbit coupling. Opt. Express, 31, 2225-2233(2023).

    [12] Y. Dai, Z. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C. B. Huang, H. Petek. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [13] Y. Dai, Z. Zhou, A. Ghosh, K. Kapoor, M. Dąbrowski, A. Kubo, C. B. Huang, H. Petek. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Appl. Phys. Rev., 9, 011420(2022).

    [14] Z. L. Deng, T. Shi, A. Krasnok, X. Li, A. Alù. Observation of localized magnetic plasmon skyrmions. Nat. Commun., 13, 8(2022).

    [15] J. Yang, X. Zheng, J. Wang, Y. Pan, A. Zhang, T. J. Cui, G. A. E. Vandenbosch. Symmetry-protected spoof localized surface plasmonic skyrmion. Laser Photon. Rev., 16, 2200007(2022).

    [16] C. Bai, J. Chen, Y. Zhang, D. Zhang, Q. Zhan. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express, 28, 10320-10328(2020).

    [17] R. Gutiérrez-Cuevas, E. Pisanty. Optical polarization skyrmionic fields in free space. J. Opt., 23, 024004(2021).

    [18] S. Gao, F. C. Speirits, F. Castellucci, S. Franke-Arnold, S. M. Barnett, J. B. Götte. Paraxial skyrmionic beams. Phys. Rev. A, 102, 053513(2020).

    [19] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photon., 9, 296-303(2022).

    [20] Y. Shen, C. He, Z. Song, B. Chen, H. He, Y. Ma, J. A. J. Fells, S. J. Elston, S. M. Morris, M. J. Booth, A. Forbes. Topologically controlled multiskyrmions in photonic gradient-index lenses. arXiv(2023).

    [21] C. Cisowski, C. Ross, S. Franke-Arnold. Building paraxial optical skyrmions using rational maps. Adv. Photon. Res., 4, 2200350(2023).

    [22] K. Singh, P. Ornelas, A. Dudley, A. Forbes. Synthetic spin dynamics with Bessel-Gaussian optical skyrmions. Opt. Express, 31, 15289-15300(2023).

    [23] W. Lin, Y. Ota, Y. Arakawa, S. Iwamoto. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [24] A. Karnieli, S. Tsesses, G. Bartal, A. Arie. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [25] X. Luo, Y. Cai, X. Yue, W. Lin, J. Zhu, Y. Zhang, F. Li. Non-Hermitian control of confined optical skyrmions in microcavities formed by photonic spin–orbit coupling. Photon. Res., 11, 610-621(2023).

    [26] M. Król, H. Sigurdsson, K. Rechcińska, P. Oliwa, K. Tyszka, W. Bardyszewski, A. Opala, M. Matuszewski, P. Morawiak, R. Mazur, W. Piecek, P. Kula, P. G. Lagoudakis, B. Piętka, J. Szczytko. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [27] Y. Shen, Q. Zhang, P. Shi, L. Du, A. V. Zayats, X. Yuan. Topological quasiparticles of light: optical skyrmions and beyond. arXiv(2022).

    [28] Y. Shen. Topological bimeronic beams. Opt. Lett., 46, 3737-3740(2021).

    [29] Y. Shen, Y. Hou, N. Papasimakis, N. I. Zheludev. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [30] A. Zdagkas, C. McDonnell, J. Deng, Y. Shen, G. Li, T. Ellenbogen, N. Papasimakis, N. I. Zheludev. Observation of toroidal pulses of light. Nat. Photonics, 16, 523-528(2022).

    [31] X. Lei, L. Du, X. Yuan, A. V. Zayats. Optical spin–orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains. Nanophotonics, 10, 3667-3675(2021).

    [32] A. Yang, X. Lei, P. Shi, F. Meng, M. Lin, L. Du, X. Yuan. Spin-manipulated photonic skyrmion-pair for pico-metric displacement sensing. Adv. Sci., 10, 2205249(2023).

    [33] Y. Shen, B. Yu, H. Wu, C. Li, Z. Zhu, A. V. Zayats. Topological transformation and free-space transport of photonic hopfions. Adv. Photon., 5, 015001(2023).

    [34] R. Simon, N. Mukunda. Universal SU(2) gadget for polarization optics. Phys. Lett. A, 138, 474-480(1989).

    [35] R. Simon, N. Mukunda. Minimal three-component SU(2) gadget for polarization optics. Phys. Lett. A, 143, 165-169(1990).

    [36] A. M. Beckley, T. G. Brown, M. A. Alonso. Full Poincaré beams. Opt. Express, 18, 10777-10785(2010).

    [37] A. E. Siegman. Lasers(1986).

    [38] O. A. Tretiakov, O. Tchernyshyov. Vortices in thin ferromagnetic films and the skyrmion number. Phys. Rev. B, 75, 012408(2007).

    [39] I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Rønnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, A. Loidl. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater., 14, 1116-1122(2015).

    [40] D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, K. Liu. Realization of ground-state artificial skyrmion lattices at room temperature. Nat. Commun., 6, 8462(2015).

    [41] P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, A. Rosch. Unwinding of a skyrmion lattice by magnetic monopoles. Science, 340, 1076-1080(2013).

    [42] A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo, F. Damay, U. K. Rößler, C. Felser, S. S. P. Parkin. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature, 548, 561-566(2017).

    [43] C. Ye. Construction of an optical rotator using quarter-wave plates and an optical retarder. Opt. Eng., 34, 3031-3035(1995).

    [44] W. Han, Y. Yang, W. Cheng, Q. Zhan. Vectorial optical field generator for the creation of arbitrarily complex fields. Opt. Express, 21, 20692-20706(2013).

    [45] A. McWilliam, C. M. Cisowski, Z. Ye, F. C. Speirits, J. B. Götte, S. M. Barnett, S. Franke-Arnold. Topological approach of characterizing optical skyrmions and multi-skyrmions. Laser Photon. Rev., 17, 2300155(2023).