• Photonics Research
  • Vol. 11, Issue 12, 2042 (2023)
Houan Teng1, Jinzhan Zhong1,2, Jian Chen1,2, Xinrui Lei1,2, and Qiwen Zhan1,2,*
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Zhangjiang Laboratory, Shanghai 201204, China
  • show less
    DOI: 10.1364/PRJ.499485 Cite this Article Set citation alerts
    Houan Teng, Jinzhan Zhong, Jian Chen, Xinrui Lei, Qiwen Zhan, "Physical conversion and superposition of optical skyrmion topologies," Photonics Res. 11, 2042 (2023) Copy Citation Text show less

    Abstract

    Optical skyrmions are quasiparticles with nontrivial topological textures that have significant potential in optical information processing, transmission, and storage. Here, we theoretically and experimentally achieve the conversion of optical skyrmions among Néel, Bloch, intermediate skyrmions, and bimerons by polarization devices, where the fusion and annihilation of optical skyrmions are demonstrated accordingly. By analyzing the polarization pattern in Poincaré beams, we reveal the skyrmion topology dependence on the device, which provides a pathway for the study of skyrmion interactions. A vectorial optical field generator is implemented to realize the conversion and superposition experimentally, and the results are in good agreement with the theoretical predictions. These results enhance our comprehension of optical topological quasiparticles, which could have a significant impact on the transfer, storage, and communication of optical information.
    Ψ=cosc0·LG0,0e0+sinc0·eiϕγLG0,le1,

    View in Article

    s=(cosβ(ρ)cosα(ϕ)cosβ(ρ)sinα(ϕ)sinβ(ρ)),

    View in Article

    Ns=14πs·(sx×sy)dxdy.

    View in Article

    sout=M·sin,

    View in Article

    MPR(ϕd/2)=MQWP(π/2)MWP(ϕd,π/4)MQWP(0)=[cosϕdsinϕd0sinϕdcosϕd0001].

    View in Article

    sout=MPR(ϕd/2)·sin=(cosβ(ρ)cos(lϕ+ϕd)cosβ(ρ)sin(lϕ+ϕd)sinβ(ρ)),

    View in Article

    sout=MHWP(0)·sin=(cos(β)cos(lϕ)cos(β)sin(lϕ)sin(β)).

    View in Article

    MQQ=MQWP(π/2)MQWP(π/4)=[001100010].

    View in Article

    sout=MQQ·sin=(sinβ(ρ)cosβ(ρ)cos(lϕ+ϕγ)cosβ(ρ)sin(lϕ+ϕγ)).

    View in Article

    S0=I(0,0)+I(π/2,π/2),S1=I(0,0)I(π/2,π/2),S2=I(π/4,π/4)I(π/4,π/4),S3=I(π/4,0)I(π/4,0),

    View in Article

    Ψ=C[eR+ρeiα(ϕ)eL],(A1)

    View in Article

    S=(|ER|2+|EL|22Re(EREL*)2Im(EREL*)|ER|2|EL|2)=C2(1+ρ22ρcosα(ϕ)2ρsinα(ϕ)1ρ2)=C2(1+ρ2)(12ρ1+ρ2cosα(ϕ)2ρ1+ρ2sinα(ϕ)1ρ21+ρ2).(A2)

    View in Article

    s=(cosβ(ρ)cosα(ϕ)cosβ(ρ)sinα(ϕ)sinβ(ρ)),(A3)

    View in Article

    s=14πσn·(nx×ny)dxdy=14π0rσdr02πdϕdβ(r)drdα(ϕ)dϕsinβ(r)=12[sinβ(r)]r=0r=rσ·12π[α(ϕ)]ϕ=0ϕ=2π=p·m,(A4)

    View in Article

    MWP(ϕ)=[1000cosϕsinϕ0sinϕcosϕ].(B1)

    View in Article

    MWP(ϕ)=[cosϕ0sinϕ010sinϕ0cosϕ].(B2)

    View in Article

    MWP(ϕ)=[cos22θ+cosϕsin22θ(1cosϕ)sin2θcos2θsinϕsin2θ(1cosϕ)sin2θcos2θsin22θ+cosϕcos22θsinϕcos2θsinϕsin2θsinϕcos2θcosϕ].(B3)

    View in Article

    M=QWP(0)WP(ϕ,π/4)QWP(π/2)=[100001010][cosϕ0sinϕ010sinϕ0cosϕ][100001010]=[cosϕsinϕ0sinϕcosϕ0001].(B4)

    View in Article

    SK1=cosc0·LG0,0·eR+sinc0·eiϕ0LG0,1·eL,SK2=cosc0·LG0,0·eR+sinc0·ei(ϕ0+Δϕ)LG0,1·eL.(D1)

    View in Article

    s=(cosβcos(ϕ+ϕ0+Δϕ/2)cosβsin(ϕ+ϕ0+Δϕ/2)sinβ),(D2)

    View in Article

    SK1=cosc0·LG0,0·eR+sinc0·eiϕ0LG0,1·eL,SK2=cosc0·LG0,0·eL+sinc0·ei(ϕ0+Δϕ)LG0,1·eR.(D3)

    View in Article

    s=(1+ρ2cosΔϕ+2ρcosΔϕ/2cos(ϕ+ϕ0+Δϕ/2)1+ρ2+2ρcosΔϕ/2cos(ϕ+ϕ0+Δϕ/2)ρ2sinΔϕ+2ρsinΔϕ/2cos(ϕ+ϕ0+Δϕ/2)1+ρ2+2ρcosΔϕ/2cos(ϕ+ϕ0+Δϕ/2)2ρsinΔϕ/2sin(ϕ+ϕ0+Δϕ/2)1+ρ2+2ρcosΔϕ/2cos(ϕ+ϕ0+Δϕ/2)).(D4)

    View in Article

    s(Δϕ=0)=(100).(D5)

    View in Article

    s(Δϕ=π)=(sinβcosβcos(ϕ+ϕ0+π/2)cosβsin(ϕ+ϕ0+π/2)),(D6)

    View in Article