• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026011 (2023)
Guyue Hu1, Qiao Ran2, Beth Wing Lam So3, Mingsheng Li1, Jiawei Shi1, Xin Dong1, Jiqiang Kang1、4、*, and Kenneth K. Y. Wong1、4、*
Author Affiliations
  • 1The University of Hong Kong, Faculty of Engineering, Department of Electrical and Electronic Engineering, Hong Kong, China
  • 2The University of Hong Kong, School of Biological Sciences, Hong Kong, China
  • 3The University of Hong Kong, School of Biomedical Sciences, LKS Faculty of Medicine, Pokfulam, Hong Kong, China
  • 4Hong Kong Science Park, Advanced Biomedical Instrumentation Centre, Hong Kong, China
  • show less
    DOI: 10.1117/1.APN.2.2.026011 Cite this Article Set citation alerts
    Guyue Hu, Qiao Ran, Beth Wing Lam So, Mingsheng Li, Jiawei Shi, Xin Dong, Jiqiang Kang, Kenneth K. Y. Wong. Noncontact photoacoustic lipid imaging by remote sensing on first overtone of the C-H bond[J]. Advanced Photonics Nexus, 2023, 2(2): 026011 Copy Citation Text show less
    References

    [1] A. Mehlem et al. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat. Protoc., 8, 1149-1154(2013).

    [2] H. Hugonnet et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution. Adv. Photonics, 3, 026004(2021).

    [3] R. C. Melo et al. Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J. Histochem. Cytochem., 59, 540-556(2011).

    [4] S. L. Liu et al. Quantitative lipid imaging reveals a new signaling function of phosphatidylinositol-3, 4-bisphophate: isoform-and site-specific activation of Akt. Mol. Cell, 71, 1092-1104.e5(2018).

    [5] K. A. Z. Berry et al. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev., 111, 6491-6512(2011).

    [6] D. Gode, D. A. Volmer. Lipid imaging by mass spectrometry–a review. Analyst, 138, 1289-1315(2013).

    [7] L. Wei et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods, 11, 410-412(2014).

    [8] M. Seeger et al. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics, 4, 102-111(2016).

    [9] J. H. Lee et al. Synthesis of a new fluorescent small molecule probe and its use for in vivo lipid imaging. Chem. Commun., 47, 7500-7502(2011).

    [10] B. J. Schwehr et al. Luminescent metal complexes as emerging tools for lipid imaging. Top. Curr. Chem., 380, 1-40(2022).

    [11] J. Yao, L. V. Wang. Photoacoustic microscopy. Laser Photonics Rev., 7, 758-778(2013).

    [12] S. Jeon et al. Review on practical photoacoustic microscopy. Photoacoustics, 15, 100141(2019).

    [13] H. F. Zhang et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol., 24, 848-851(2006).

    [14] C. Liu et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels. Adv. Photonics, 3, 016002(2021).

    [15] R. J. Paproski et al. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors. Sci. Rep., 4, 1-7(2014).

    [16] A. Taruttis, V. Ntziachristos. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics, 9, 219-227(2015).

    [17] J. Yao et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods, 12, 407-410(2015).

    [18] H. Chen et al. Optical-resolution photoacoustic microscopy using transparent ultrasound transducer. Sensors, 19, 5470(2019).

    [19] H. Lv et al. Application of piezoelectric transducers in photoacoustic spectroscopy for trace gas analysis. Microw. Opt. Technol. Lett., 63, 2040-2051(2021).

    [20] M. Vallet et al. Quantitative comparison of PZT and CMUT probes for photoacoustic imaging: experimental validation. Photoacoustics, 8, 48-58(2017).

    [21] P. H. Reza et al. Deep non-contact photoacoustic initial pressure imaging. Optica, 5, 814-820(2018).

    [22] P. Hajireza et al. Non-interferometric photoacoustic remote sensing microscopy. Light: Sci. Appl., 6, e16278-e16278(2017).

    [23] Z. Hosseinaee et al. Label-free, non-contact, in vivo ophthalmic imaging using photoacoustic remote sensing microscopy. Opt. Lett., 45, 6254-6257(2020).

    [24] P. Kedarisetti et al. Label-free lipid contrast imaging using non-contact near-infrared photoacoustic remote sensing microscopy. Opt. Lett., 45, 4559-4562(2020).

    [25] H. Lee et al. Nanosecond SRS fiber amplifier for label-free near-infrared photoacoustic microscopy of lipids. Photoacoustics, 25, 100331(2022).

    [26] J. Shi et al. Grüneisen-relaxation photoacoustic microscopy at 1.7  μm and its application in lipid imaging. Opt. Lett., 45, 3268-3271(2020). https://doi.org/10.1364/OL.393780

    [27] P. Wang et al. Bond‐selective imaging of deep tissue through the optical window between 1600 and 1850 nm. J. Biophotonics, 5, 25-32(2012).

    [28] D. R. Miller et al. Deep tissue imaging with multiphoton fluorescence microscopy. Curr. Opin. Biomed. Eng., 4, 32-39(2017).

    [29] C. Li et al. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids. Photonics Res., 8, 160-164(2020).

    [30] R. Manwar, K. Kratkiewicz, K. Avanaki. Overview of ultrasound detection technologies for photoacoustic imaging. Micromachines, 11, 692(2020).

    [31] T. E. Matthews et al. Deep tissue imaging using spectroscopic analysis of multiply scattered light. Optica, 1, 105-111(2014).

    [32] W. W. Chen et al. Spectroscopic coherent Raman imaging of Caenorhabditis elegans reveals lipid particle diversity. Nat. Chem. Biol., 16, 1087-1095(2020).

    [33] L. Shi et al. Optical imaging of metabolic dynamics in animals. Nat. Commun., 9, 2995(2018).

    [34] L. Peters, B. De Smedt. Arithmetic in the developing brain: a review of brain imaging studies. Dev. Cognit. Neurosci., 30, 265-279(2018).

    [35] O. Tzang et al. Lock-in detection of photoacoustic feedback signal for focusing through scattering media using wave-front shaping. Opt. Express, 24, 28122-28130(2016).

    [36] Y. Zhao et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement. Opt. Lett., 39, 2565-2568(2014).

    [37] M. K. Dasa et al. All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region. Photoacoustics, 18, 100163(2020).

    [38] J. Zhou et al. Miniature non-contact photoacoustic probe based on fiber-optic photoacoustic remote sensing microscopy. Opt. Lett., 46, 5767-5770(2021).

    Guyue Hu, Qiao Ran, Beth Wing Lam So, Mingsheng Li, Jiawei Shi, Xin Dong, Jiqiang Kang, Kenneth K. Y. Wong. Noncontact photoacoustic lipid imaging by remote sensing on first overtone of the C-H bond[J]. Advanced Photonics Nexus, 2023, 2(2): 026011
    Download Citation