• Infrared and Laser Engineering
  • Vol. 48, Issue 12, 1204002 (2019)
Kou Guangjie1、*, Yang Zhengwei1、2, Jia Yong1, Zhang Wei1, and Du Ying3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.1204002 Cite this Article
    Kou Guangjie, Yang Zhengwei, Jia Yong, Zhang Wei, Du Ying. Detection on cracks in blades with complex profile based on ultrasonic infrared thermal imaging[J]. Infrared and Laser Engineering, 2019, 48(12): 1204002 Copy Citation Text show less
    References

    [1] Feng Qiang, Tong Jinyan, Zheng Yunrong, et al. Service damage and repair of gas turbine blades [J]. Materials China, 2012, 31(12): 21-34. (in Chinese)

    [2] Geng Xiaofeng, Wei Kexiang, Wang Qiong, et al. Research on crack detection of wind turbine blade based on multi-frequency harmonic modulation[J]. Journal of Vibration and Shock, 2018, 37(22): 201-205. (in Chinese)

    [3] Song Kai, Wang Chong, Zhang Lipan, et al. Design and experimental study of automatic profile eddy current testing system for aeroengine turbine blade cracks[J]. Nondestructive Testing, 2018, 61(19): 45-49. (in Chinese)

    [4] Gao Xiaojin, Zhou Jinshuai, Jiang Bohong. Research on non-destructive testing of C/SiC composites by infrared thermal image[J]. Infrared and Laster Engineering, 2018, 48(6): 720-725. (in Chinese)

    [5] Vavilov V P, Burleigh D D. Review of pulsed thermal NDT: Physical principles, theory and data processing [J]. NDT & E International, 2015, 73: 28-52.

    [6] Liu Yingtao, Guo Guangping, Zeng Zhi, et al. Development history, current situation and trend of infrared thermal image non-destructive testing technology[J]. Nondestructive Testing, 2017, 39(8): 63-70. (in Chinese)

    [7] Gan Wendong. Research on defect detection technology of pressure equipment based on infrared thermal wave[D]. Chengdu: University of Electronic Science and Technology of China, 2018, 6: 5-8. (in Chinese)

    [8] He Y, Chen S, Zhou D, et al. Shared excitation based nonlinear ultrasoundand vibro-thermography testing for CFRP barely visible impact damage inspection[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12):5575-5584.

    [9] Fierro G P M, Calla D, Ginzburg D, et al. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures[J]. Journal of Sound and Vibration, 2017, 404: 102-115.

    [10] Min Qingxu, Zhang Chaoxing, Zhu Junzhen, et al. Effect of excitation source position on crack heat generation in ultrasonic infrared thermal imaging [J]. Infrared and Laster Engineering, 2017, 46(1): 0104007. (in Chinese)

    [11] Wu Jigang, Li Zan, Li Xuejun, et al. Research on influence of excitation parameters in ultrasonic thermography[J]. Laster & Infrared, 2016, 46(9): 1096-1011. (in Chinese)

    [12] Jin Guofeng, Zhang Wei, Song Yuanjia, et al. Numerical simulation of ultrasonic infrared thermal wave detection for cracks with curvature structure[J]. Science Technology and Engineering, 2013, 13(3): 776-779. (in Chinese)

    [13] Dyrwal A, Meo M, Ciampa F. Nonlinear air-coupled thermosonics for fatigue micro-damage detection and localization[J]. NDT and E International, 2018, 97: 59 -67.

    [14] Lick K, Urcinas J, Austin P, et al. Study of diminutive and subsurface cracks using sonic IR inspection[J], Review of Quantitative Nondestructive Evaluation, 2008, 27: 504-511.

    [15] Jiang Haijun, Chen Li, Wei Yibing, et al. Ultrasonic thermal wave imaging technology applied to the detection of aeroengine blade cracks[C]//2018 Far East Nondestructive Testing New Technology Forun, 2018. (in Chinese)

    [16] Humphrey V F. Ultrasound and matter—Physical interactions [J]. Progress in Biophysics and Molecular Biology, 2007(93): 195-211.

    [17] Tian Gan, Yang Zhengwei, Zhu Jietang, et al. Vibration characteristics and acoustic chaos analysis in ultrasonic infrared thermal wave detection[J]. Infrared and Laster Engineering, 2016, 45(3): 0304003. (in Chinese)

    [18] Jia Yong, Zhang Ruimin, Zhang Wei, et al. Detection and simulation of surface cracks in TC4 structures with curvature by ultrasonic thermal imaging[J]. Surface Technology, 2018, 45(10): 302-308. (in Chinese)

    CLP Journals

    [1] Xin Li, Yong Chen, Weixian Li, Yangyang Li, Lei Zheng, Sijin Wu. Projection aided digital shearography scanning detection technology[J]. Infrared and Laser Engineering, 2021, 50(8): 20210509

    [2] Zhengwei Yang, Zhibin Zhao, Jianguo Gao, Guangjie Kou, Wei Zhang. Evaluation of infrared thermal wave detection capability for delamination damage of thermosetting/thermoplastic composites[J]. Infrared and Laser Engineering, 2021, 50(S2): 20210304

    Kou Guangjie, Yang Zhengwei, Jia Yong, Zhang Wei, Du Ying. Detection on cracks in blades with complex profile based on ultrasonic infrared thermal imaging[J]. Infrared and Laser Engineering, 2019, 48(12): 1204002
    Download Citation