• Laser & Optoelectronics Progress
  • Vol. 58, Issue 3, 3140061 (2021)
Li Hongbo1, Guo Meng1, Wang Lin1, Deng Chengxu1, and Luo Junting2
Author Affiliations
  • 1Key Laboratory of Advanced Forging and Forming Technology and Science Ministry of Education, Yanshan University, Qinhuangdao , Hebei 066004, China
  • 2State Key Laboratory of Preparation Technology and Science of Metastable Materials, Yanshan University, Qinhuangdao , Hebei 066004, China
  • show less
    DOI: 10.3788/LOP202158.0314006 Cite this Article Set citation alerts
    Li Hongbo, Guo Meng, Wang Lin, Deng Chengxu, Luo Junting. Laser Cladding Preparation and Wear Resistance of H13/Ni/WC Hybrid Powder Gradient Cladding Layer[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3140061 Copy Citation Text show less
    Powder morphologies. (a) H13; (b) Ni/WC; (c) H13/Ni/WC
    Fig. 1. Powder morphologies. (a) H13; (b) Ni/WC; (c) H13/Ni/WC
    Laser rapid cladding system
    Fig. 2. Laser rapid cladding system
    Appearances of cladding layer. (a) Surface macromorphology; (b) cross-section morphology
    Fig. 3. Appearances of cladding layer. (a) Surface macromorphology; (b) cross-section morphology
    Microstructures of cross-section of cladding layer. (a) Low magnification; (b) high magnification
    Fig. 4. Microstructures of cross-section of cladding layer. (a) Low magnification; (b) high magnification
    SEM morphology of cross-section of cladding layer and elemental line-scanning. (a) SEM morphology; (b) elemental line-scanning
    Fig. 5. SEM morphology of cross-section of cladding layer and elemental line-scanning. (a) SEM morphology; (b) elemental line-scanning
    Microhardness distribution on the cross-section of cladding layer
    Fig. 6. Microhardness distribution on the cross-section of cladding layer
    Hardness curves of matrix and cladding layer at different temperatures
    Fig. 7. Hardness curves of matrix and cladding layer at different temperatures
    Surface morphologies of matrix and cladding layer after 10 thermal fatigue tests. (a) H13 matrix; (b) cladding layer
    Fig. 8. Surface morphologies of matrix and cladding layer after 10 thermal fatigue tests. (a) H13 matrix; (b) cladding layer
    Surface morphologies of matrix and cladding layer after 25 thermal fatigue tests. (a) H13 matrix; (b) cladding layer
    Fig. 9. Surface morphologies of matrix and cladding layer after 25 thermal fatigue tests. (a) H13 matrix; (b) cladding layer
    Wear surface morphologies of cladding layer at different temperatures. (a) 350℃; (b) 450℃; (c) 550 ℃
    Fig. 10. Wear surface morphologies of cladding layer at different temperatures. (a) 350℃; (b) 450℃; (c) 550 ℃
    Comparison of wear depth between matrix and cladding layer
    Fig. 11. Comparison of wear depth between matrix and cladding layer
    ElementMass fraction/%
    C0.35
    Si1.1
    Mn0.35
    Cr5
    Mo1.5
    V1
    O0.027
    FeBal.
    Table 1. Chemical composition of H13 powder
    ComponentMass fraction/%
    Ni10
    WC90
    Impurity≤0.1
    Table 2. Chemical composition of Ni/W powder
    LayerMass fraction/%
    Ni/WCH13
    First floor(No.1)1585
    Second floor(No.2)3070
    Table 3. Powder ratio of gradient cladding layer
    LayerPowderLaser power/kWPreset powder thickness/mmScanning speed/(mm·s-1)Defocus quantity/mmLaser scanning interval/mm
    No.185%H13+15%Ni/WC1.40.67301
    No.270%H13+30%Ni/WC1.50.8
    Table 4. H13/Ni/WC gradient cladding layer laser cladding process parameters
    LevelLoad/NTemperature/℃Number of revolution
    13203507200
    24804507200
    36405507200
    Table 5. Factor level table of friction and wear test of matrix and cladding layer
    Li Hongbo, Guo Meng, Wang Lin, Deng Chengxu, Luo Junting. Laser Cladding Preparation and Wear Resistance of H13/Ni/WC Hybrid Powder Gradient Cladding Layer[J]. Laser & Optoelectronics Progress, 2021, 58(3): 3140061
    Download Citation