• Acta Optica Sinica
  • Vol. 41, Issue 14, 1416002 (2021)
Xiaowei Jiang1、3 and Hua Wu2、3、*
Author Affiliations
  • 1College of Information Engineering, Quzhou College of Technology, Quzhou, Zhejiang 324000, China
  • 2College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, China
  • 3Key Laboratory of Opto-Electronics Technology Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/AOS202141.1416002 Cite this Article Set citation alerts
    Xiaowei Jiang, Hua Wu. Dual-Channel Narrow Bandwidth Metamaterial Absorber[J]. Acta Optica Sinica, 2021, 41(14): 1416002 Copy Citation Text show less
    References

    [1] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [2] Wang Y, Sun T Y, Paudel T et al. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells[J]. Nano Letters, 12, 440-445(2012).

    [3] Rufangura P, Sabah C. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications[J]. Journal of Alloys and Compounds, 671, 43-50(2016).

    [4] Celanovic I, Perreault D, Kassakian J. Resonant-cavity enhanced thermal emission[J]. Physical Review B, 72, 075127(2005).

    [5] Mao Q J, Feng C Z. Absorptance properties of nested-ring metamaterial absorbers based on magnetic polaritons[J]. Acta Optica Sinica, 39, 0816001(2019).

    [6] Sobhani A, Knight M W, Wang Y et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J]. Nature Communications, 4, 1643(2013).

    [7] Song S C, Ma X L, Pu M B et al. Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber[J]. Photonics Research, 6, 492-497(2018).

    [8] Ren Z B, Sun Y H, Zhang S Q et al. Tunable narrow band perfect metamaterial absorber based on guided-mode resonance[J]. Modern Physics Letters B, 33, 1950171(2019).

    [9] Dayal G, Ramakrishna S A. Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane[J]. Optics Express, 22, 15104-15110(2014).

    [10] Hu F R, Qian Y X, Li Z et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics, 15, 055101(2013).

    [11] Su Z X, Yin J B, Zhao X P. Terahertz dual-band metamaterial absorber based on graphene/MgF2 multilayer structures[J]. Optics Express, 23, 1679-1690(2015).

    [12] Liao Y L, Zhao Y. Ultra-narrowband dielectric metamaterial absorber for sensing based on cavity-coupled phase resonance[J]. Results in Physics, 17, 103072(2020).

    [13] Ren Z B, Sun Y H, Lin Z H et al. Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration[J]. Optical Materials, 89, 308-315(2019).

    [14] Liu C, Qi L M, Zhang X. Broadband graphene-based metamaterial absorbers[J]. AIP Advances, 8, 015301(2018).

    [15] Song Z Y, Wang K, Li J W et al. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials[J]. Optics Express, 26, 7148-7154(2018).

    [16] Vora A, Gwamuri J, Pala N et al. Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics[J]. Scientific Reports, 4, 4901(2014).

    [17] Sotor J, Sobon G, Macherzynski W et al. Black phosphorus saturable absorber for ultrashort pulse generation[J]. Applied Physics Letters, 107, 051108(2015).

    [18] Gong Y, Wang Z, Li K et al. Highly efficient and broadband mid-infrared metamaterial thermal emitter for optical gas sensing[J]. Optics Letters, 42, 4537-4540(2017).

    [19] Duan X Y, Chen S Q, Liu W W et al. Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime[J]. Journal of Optics, 16, 125107-125113(2014).

    [20] Lei L, Li S, Huang H X et al. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial[J]. Optics Express, 26, 5686-5693(2018).

    [21] Ding F, Dai J, Chen Y et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).

    [22] Cui Y X, Fung K H, Xu J et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 12, 1443-1447(2012).

    [23] Liu N, Mesch M, Weiss T et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 10, 2342-2348(2010).

    [24] Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film[J]. Optics Express, 16, 11328-11336(2008).

    [25] Zhu Z H, Evans P G, Haglund R F et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters, 17, 4881-4885(2017).

    [26] Polyakov A, Thompson K F, Dhuey S D et al. Plasmon resonance tuning in metallic nanocavities[J]. Scientific Reports, 2, 933(2012).

    [27] Meng L, Zhao D, Ruan Z et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor[J]. Optics Letters, 39, 1137-1140(2014).

    [28] Feng A S, Yu Z J, Sun X K. Ultranarrow-band metagrating absorbers for sensing and modulation[J]. Optics Express, 26, 28197-28205(2018).

    [29] Liao Y L, Zhao Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J]. Scientific Reports, 10, 1480(2020).

    [30] Liu B, Tang C J, Chen J et al. Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials[J]. Optics Express, 25, 12061-12068(2017).

    [31] Xu Z C, Gao R M, Ding C F et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Physics Letters, 31, 054205(2014).

    [32] Hu F R, Wang L, Quan B G et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D, 46, 195103(2013).

    [33] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [34] Huang H L, Xia H, Guo Z B et al. Design of broadband metamaterial absorbers for permittivity sensitivity and solar cell application[J]. Chinese Physics Letters, 34, 117801(2017).

    [35] Li W C, Zhou X, Ying Y et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J]. AIP Advances, 5, 067151(2015).

    [36] Wang R. Guided mode resonance and extraordinary transmission in subwavelength metallic gratings[D]. Harbin: Harbin Institute of Technology, 20-30(2015).

    [37] Zeng Z W, Liu H T, Zhang S W. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model[J]. Acta Physica Sinica, 61, 200701(2012).

    [38] Zhong M. Design and measurement of a narrow band metamaterial absorber in terahertz range[J]. Optical Materials, 100, 109712(2020).

    [39] Ren Y Z. Research on the optical absorption characteristics based on molybdenum disulfide-grating composite structure[D]. Hefei: Hefei University of Technology, 15-35(2019).

    [40] Luo L B, Ge C W, Tao Y F et al. High-efficiency refractive index sensor based on the metallic nanoslit arrays with gain-assisted materials[J]. Nanophotonics, 5, 548-555(2016).