• Chinese Journal of Lasers
  • Vol. 51, Issue 8, 0801004 (2024)
Zhiqiang Wan1、2, Aibi Yang3, Guanghua Yang3, Shan Yu1、2, Ziye Hu3, Jilong Tang1、2、*, and Zhipeng Wei1
Author Affiliations
  • 1State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2Zhongshan Institute, Changchun University of Science and Technology, Zhongshan 528437, Guangdong , China
  • 3Shenzhen JPT Opto-electronics Co., Ltd., Shenzhen 518110, Guangdong , China
  • show less
    DOI: 10.3788/CJL231147 Cite this Article Set citation alerts
    Zhiqiang Wan, Aibi Yang, Guanghua Yang, Shan Yu, Ziye Hu, Jilong Tang, Zhipeng Wei. Ring Light Spot Adjustable Signal Combiner with High Power and Large Core Diameter[J]. Chinese Journal of Lasers, 2024, 51(8): 0801004 Copy Citation Text show less
    References

    [1] Yan M N, Zhou L, Liang J L et al. Research on nanosecond fiber laser precision cutting process technology of superelastic nitinol sheets[J]. Mechanical & Electrical Engineering Technology, 52, 85-88(2023).

    [2] Chen S, Huang H Y, Dong X W et al. Research status of laser cutting technology[J]. Nonferrous Metals Processing, 51, 1-6, 26(2022).

    [3] Ceglarek D, Colledani M, Váncza J et al. Rapid deployment of remote laser welding processes in automotive assembly systems[J]. CIRP Annals, 64, 389-394(2015).

    [4] Haeusler A, Hollatz S, Olowinsky A et al. Quality improvement of the surface of laser micro welds by using a dual beam setup[J]. Journal of Laser Applications, 30, 032423(2018).

    [5] Yang Q, Yu B L, Zhen S L et al. The survey of optic fiber lasers[J]. Optoelectronic Technology & Information, 13-18(2002).

    [6] Ma S Y, Zhang W Y, Qiu J X et al. Review on technology development of high power CW fiber laser[J]. Optical Fiber & Electric Cable and Their Applications, 1-6, 34(2019).

    [7] Jiao L, Song Y J, Zhang X P. Four-wave-mixing enhanced multi-wavelength Brillouin erbium-doped fiber laser[J]. Acta Optica Sinica, 31, 0214007(2011).

    [8] Zhu J Q. Study on the method of generating composite annular beam and its spot welding characteristics[D](2021).

    [9] Zhao Y Q, Li X, Liu Z Q et al. Stability enhancement of molten pool and keyhole for 2195 Al-Li alloy using fiber-diode laser hybrid welding[J]. Journal of Manufacturing Processes, 85, 724-741(2023).

    [10] Wang L, Gao X D, Kong F R. Keyhole dynamic status and spatter behavior during welding of stainless steel with adjustable-ring mode laser beam[J]. Journal of Manufacturing Processes, 74, 201-219(2022).

    [11] Maina M R, Okamoto Y, Okada A et al. High surface quality welding of aluminum using adjustable ring-mode fiber laser[J]. Journal of Materials Processing Technology, 258, 180-188(2018).

    [12] Wang L, Mohammadpour M, Yang B X et al. Monitoring of keyhole entrance and molten pool with quality analysis during adjustable ring mode laser welding[J]. Applied Optics, 59, 1576-1584(2020).

    [13] Yang H, Tang X H, Hu C et al. Study on laser welding of copper material by hybrid light source of blue diode laser and fiber laser[J]. Journal of Laser Applications, 33, 032018(2021).

    [14] Mohammadpour M, Wang L, Kong F R et al. Adjustable ring mode and single beam fiber lasers: a performance comparison[J]. Manufacturing Letters, 25, 50-55(2020).

    [15] Volpp J, Vollertsen F. Impact of multi-focus beam shaping on the process stability[J]. Optics & Laser Technology, 112, 278-283(2019).

    [16] Rasch M, Roider C, Kohl S et al. Shaped laser beam profiles for heat conduction welding of aluminium-copper alloys[J]. Optics and Lasers in Engineering, 115, 179-189(2019).

    [17] Chen Z L, Lei C M, Wang Z F et al. Based on the 7×1 fiber power combiner with 50 μm output fiber, the high beam quality fiber laser synthesis of more than 14 kW is realized[J]. Chinese Journal of Lasers, 45, 0415001(2018).

    [18] Wu W J, Chen Z L, Wang Z F et al. Beam combining of fiber lasers by a 3×1 signal combiner at a power >13 kW[J]. Optical Fiber Technology, 54, 102109(2020).

    [19] Fu M, Li Z X, Wang Z F et al. Research on high beam quality 3×1 fiber signal combiner[J]. Infrared and Laser Engineering, 51, 20210354(2022).

    [20] Wu W J, Chen Z L, Wang Z F et al. Novel 3×1 signal combiner with high-power fiber laser output of high beam quality[J]. Optik, 225, 165353(2021).

    [21] Zhou Y Y, Qiu Q, Yang A B et al. All-fiber cascaded combiners for high-power adjustable-ring mode laser beam with a flattop central beam[J]. Optics & Laser Technology, 163, 109324(2023).

    [22] Fu M, Wang J W, Li Z X et al. Research on adjustable ring-mode fiber signal combiner[J]. Photonics, 10, 195(2023).

    [23] Zhou H, Chen Z L, Zhou X F et al. All-fiber 7×1 signal combiner for high power fiber lasers[J]. Applied Optics, 54, 3090-3094(2015).

    [24] Zou S Z, Yu H J, Zuo J X et al. Kilowatt-level 4×1 fiber combiner of low brightness loss with a square core output fiber[J]. Journal of Lightwave Technology, 39, 2130-2135(2021).

    [25] Stachowiak D. High-power passive fiber components for all-fiber lasers and amplifiers application—design and fabrication[J]. Photonics, 5, 38(2018).

    Zhiqiang Wan, Aibi Yang, Guanghua Yang, Shan Yu, Ziye Hu, Jilong Tang, Zhipeng Wei. Ring Light Spot Adjustable Signal Combiner with High Power and Large Core Diameter[J]. Chinese Journal of Lasers, 2024, 51(8): 0801004
    Download Citation