• Photonics Research
  • Vol. 8, Issue 10, A39 (2020)
Yang Li1, Chao Liang1, Gaopeng Wang2, Jielei Li1..., Shi Chen1, Shihe Yang2, Guichuan Xing1,4,* and Hui Pan1,3,5,*|Show fewer author(s)
Author Affiliations
  • 1Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
  • 2Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
  • 3Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, China
  • 4e-mail: gcxing@um.edu.mo
  • 5e-mail: huipan@um.edu.mo
  • show less
    DOI: 10.1364/PRJ.398529 Cite this Article Set citation alerts
    Yang Li, Chao Liang, Gaopeng Wang, Jielei Li, Shi Chen, Shihe Yang, Guichuan Xing, Hui Pan, "Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells," Photonics Res. 8, A39 (2020) Copy Citation Text show less
    References

    [1] M. A. Green, A. Ho-Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics, 8, 506-514(2014).

    [2] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [3] National Renewable. Best-research-cell-efficiencies-20200406.

    [4] J. A. Christians, S. N. Habisreutinger, J. J. Berry, J. M. Luther. Stability in perovskite photovoltaics: a paradigm for newfangled technologies. ACS Energy Lett., 3, 2136-2143(2018).

    [5] H. J. Jung, D. Kim, S. Kim, J. Park, V. P. Dravid, B. Shin. Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing. Adv. Mater., 30, 1802769(2018).

    [6] A. Rajagopal, K. Yao, A. K. Y. Jen. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering. Adv. Mater., 30, 1800455(2018).

    [7] L. F. Liu, A. Y. Mei, T. F. Liu, P. Jiang, Y. S. Sheng, L. J. Zhang, H. W. Han. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc., 137, 1790-1793(2015).

    [8] L. J. Zuo, Z. W. Gu, T. Ye, W. F. Fu, G. Wu, H. Y. Li, H. Z. Chen. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc., 137, 2674-2679(2015).

    [9] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515(2019).

    [10] Y. Li, L. Ji, R. Liu, C. Zhang, C. H. Mak, X. Zou, H.-H. Shen, S.-Y. Leu, H.-Y. Hsu. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A, 6, 12842-12875(2018).

    [11] S. I. Seok, M. Gratzel, N. G. Park. Methodologies toward highly efficient perovskite solar cells. Small, 14, 1704177(2018).

    [12] T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong. Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater., 6, 1600457(2016).

    [13] S. Ameen, M. A. Rub, S. A. Kosa, K. A. Alamry, M. S. Akhtar, H. S. Shin, H. K. Seo, A. M. Asiri, M. K. Nazeeruddin. Perovskite solar cells: influence of hole transporting materials on power conversion efficiency. ChemSusChem, 9, 10-27(2016).

    [14] X. W. Xu, C. Q. Ma, Y. H. Cheng, Y. M. Xie, X. P. Yi, B. Gautam, S. M. Chen, H. W. Li, C. S. Lee, F. So, S. W. Tsang. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources, 360, 157-165(2017).

    [15] N. Arora, M. I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S. M. Zakeeruddin, M. Gratzel. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768-771(2017).

    [16] C. T. Zuo, L. M. Ding. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small, 11, 5528-5532(2015).

    [17] J. B. You, Z. R. Hong, Y. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. R. Lu, Y. S. Liu, H. P. Zhou, Y. Yang. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 8, 1674-1680(2014).

    [18] Q. Wang, C. Bi, J. Huang. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy, 15, 275-280(2015).

    [19] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun., 6, 7747(2015).

    [20] D. Y. Luo, W. Q. Yang, Z. P. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. J. Xu, T. H. Liu, K. Chen, F. J. Ye, P. Wu, L. C. Zhao, J. Wu, Y. G. Tu, Y. F. Zhang, X. Y. Yang, W. Zhang, R. H. Friend, Q. H. Gong, H. J. Snaith, R. Zhu. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science, 360, 1442-1446(2018).

    [21] W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, U. L. Dong, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 356, 1376-1379(2017).

    [22] Y. Shao, Y. Yuan, J. Huang. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cell. Nat. Energy, 1, 15001(2016).

    [23] J. Cao, B. H. Wu, R. H. Chen, Y. Y. Q. Wu, Y. Hui, B. W. Mao, N. F. Zheng. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater., 30, 1705596(2018).

    [24] T. Singh, S. Oz, A. Sasinska, R. Frohnhoven, S. Mathur, T. Miyasaka. Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers. Adv. Funct. Mater., 28, 1706287(2018).

    [25] Y. Reyna, M. Salado, S. Kazim, A. Pérez-Tomas, S. Ahmad, M. Lira-Cantu. Performance and stability of mixed FAPbI3(0.85)MAPbBr3(0.15) halide perovskite solar cells under outdoor conditions and the effect of low light irradiation. Nano Energy, 30, 570-579(2016).

    [26] K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee, M. K. Nazeeruddin. Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy Environ. Sci., 10, 621-627(2017).

    [27] Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, A. Ho-Baillie, S. J. Huang, M. A. Green, J. Seidel, T. K. Ahn, S. Seok. Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater., 6, 1502104(2016).

    [28] T. J. Jacobsson, J.-P. Correa-Baena, E. H. Anaraki, B. Philippe, S. D. Stranks, M. E. F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.-E. Moser, H. Rensmo, A. Hagfeldt. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc., 138, 10331-10343(2016).

    [29] V. Ramana, H. Su, Y. Wu, H. Wu, J. Xie, X. Liu, J. Fan, J. Dai, Z. He. Photon-generated carriers excited superoxide species inducing long-term photoluminescence enhancement of MAPbI3 perovskite single crystals. J. Mater. Chem. A, 5, 12048-12053(2017).

    [30] W. Chen, G.-N. Zhang, L. Xu, R. Gu, Z. Xu, H. Wang, Z. He. Low temperature processed, high-performance and stable NiOx based inverted planar perovskite solar cells via a poly(2-ethyl-2-oxazoline) nanodots cathode electron-extraction layer. Mater. Today Energy, 1, 1-10(2016).

    [31] H. Zhang, J. Cheng, F. Lin, H. He, J. Mao, K. S. Wong, A. K. Jen, W. C. Choy. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 10, 1503-1511(2016).

    [32] A. Abrusci, S. D. Stranks, P. Docampo, H. L. Yip, A. K. Jen, H. J. Snaith. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett., 13, 3124-3128(2013).

    [33] Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967-970(2015).

    [34] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci., 8, 1602-1608(2015).

    [35] M. Bag, L. A. Renna, R. Y. Adhikari, S. Karak, F. Liu, P. M. Lahti, T. P. Russell, M. T. Tuominen, D. Venkataraman. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc., 137, 13130-13137(2015).

    [36] J. A. Bartelt, D. Lam, T. M. Burke, S. M. Sweetnam, M. D. McGehee. Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv. Energy Mater., 5, 1500577(2015).

    CLP Journals

    [1] Qing Zhang, Carole Diederichs, Qihua Xiong, "Golden hour for perovskite photonics," Photonics Res. 8, PP1 (2020)

    Yang Li, Chao Liang, Gaopeng Wang, Jielei Li, Shi Chen, Shihe Yang, Guichuan Xing, Hui Pan, "Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells," Photonics Res. 8, A39 (2020)
    Download Citation