[1] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons [J]. Phys. Rev. Lett., 1993, 71: 1661-1664.
[2] Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach [J]. Ann. Inst. Fourier (Grenoble), 2000, 50: 321-362.
[3] Constantin A, Escher J. Wave breaking for nonlinear nonlocal shallow water equations [J]. Acta Mathematica, 1998, 181: 229-243.
[4] Liu Zhengrong, Long Yao. Compacton-like wave and kink-like wave of GCH equation [J]. Nonlinear Analysis: Real World Applications, 2007, 8: 136-155.
[5] Qian Tifei, Tang Minying. Peakons and periodic cusp waves in a generalized Camassa-Holm equation [J]. Chaos, Solitons and Fractals, 2001, 12: 1347-1360.
[6] Abdul-Majid Wazwaz. Peakons, kinks, compactons and solitary patterns solutions for a family of Camassa-Holm equations by using new hyperbolic schemes [J]. Applied Mathematics and Computation, 2006, 182: 412-424.
[7] Lou Senyue, Ma Hongcai. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method [J]. Journal of Physics A: Mathematical and General, 2005, 38: 129-137.
[8] Ma Hongcai. A simple method to generate Lie point symmetry groups of the (3+1)- dimensional Jimbo-Miwa equation [J]. Chinese Physics Letters, 2005, 22: 554-557.