• Chinese Journal of Quantum Electronics
  • Vol. 35, Issue 5, 550 (2018)
Hui LI1、* and Yingjie WANG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2018.05.007 Cite this Article
    LI Hui, WANG Yingjie. Correlation delay shift keying chaotic communication based on quantum key distribution[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 550 Copy Citation Text show less
    References

    [1] Turk M, Ogras H. Classification of chaos-based digital modulation techniques using wavelet neural networks and performance comparison of wavelet families[J]. Expert Systems with Applications, 2011, 38(3): 2557-2565.

    [2] Kaddoum G, Richardson F D, Gagnon F. Design and analysis of a multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Communications, 2013, 61(8): 3281-3291.

    [3] Yang H, Jiang G P, Duan J Y. Novel frequency-modulated differential chaos shift keying modulation scheme based on phase separation[J]. Journal of Applied Analysis and Computation, 2015, 5(2): 189-196.

    [4] Duan J Y, Jiang G P, Yang H. Reference-adaptive CDSK: An enhanced version of correlation delay shift keying[J]. IEEE Transactions on Circuits and Systems II Express Briefs, 2015 , 62(1): 90-94.

    [5] Quyen N X. On the performance of low-rate wireless correlation-delay-shift-keying system[J]. AEU-International Journal of Electronics and Communications, 2017, 71: 37-44.

    [6] Ding Q, Wang J N. Design of frequency-modulated correlation delay shift keying chaotic communication system[J]. IET Communications, 2011, 5(7): 901-905.

    [7] Mohammad N, Maté B P. Hadamard coded modulation: An alternative to OFDM for wireless optical communications[C]. IEEE Global Communications Conference, 2014: 2102-2107.

    [8] Suchitra G, Valarmathi M L. BER performance of walsh-hadamard like kronecker product codes in a DS-CDMA and cognitive underlay system[J]. Wireless Personal Communications, 2013, 71(3): 2023-2043.

    [9] Woodhead E, Pironio S. Effects of preparation and measurement misalignments on the security of the BB84 quantum key distribution protocol[J]. Physical Review A, 2013, 87(87): 34-44.

    [10] Huang W, Wen Q Y. Quantum key agreement with EPR pairs and single-particle measurements[J]. Quantum Information Processing, 2014, 13(3): 649-663.

    [11] Yang G, Sun S J. Flexible protocol for quantum private query based on B92 protocol[J]. Quantum Information Processing, 2014, 13(3): 805-813.

    [12] Kim C M, Kim Y W, Park Y J. Attack with Hong-Ou-Mandel interferometer to quantum key distribution[J]. Current Applied Physics, 2011, 11(4): 1006-1009.

    [13] Bouzid A, Park J B, Kim S M. Characterization of a single-photon detector at 1.55 μm operated with an active hold-off technique for quantum key distribution[J]. Current Applied Physics, 2011, 11(3): 903-908.

    [14] Chiu C Y, Lambert N. No-cloning of quantum steering[J]. Studies in History and Philosophy of Science Part B, 2016, 44(4): 379-394.

    [15] Lee J H , An C. Analysis of boss map according to delay time in CDSK system and proposed chaos system[C]. IEEE International Conference on Consumer Electronics, 2015: 521-524.

    LI Hui, WANG Yingjie. Correlation delay shift keying chaotic communication based on quantum key distribution[J]. Chinese Journal of Quantum Electronics, 2018, 35(5): 550
    Download Citation