• Journal of Innovative Optical Health Sciences
  • Vol. 8, Issue 3, 1541005 (2015)
M. S. Wróbel1、*, A. P. Popov2, A. V. Bykov2, M. Kinnunen2, M. Jedrzejewska-Szczerska1, and V. V. Tuchin2、3、4
Author Affiliations
  • 1Department of Metrology and Optoelectronics Gdansk University of Technology Gabriela Narutowicza Street 11/12 80-233 Gdansk, Poland
  • 2Optoelectronics and Measurement Techniques Laboratory Faculty of Information Technology and Electrical Engineering University of Oulu, P. O. Box 4500 FI-90014 Oulu, Finland
  • 3Research-Educational Institute of Optics and Biophotonics Saratov State University, Saratov 410012, Russia
  • 4Institute of Precise Mechanics and Control Russian Academy of Sciences, Saratov 410028, Russia
  • show less
    DOI: 10.1142/s1793545815410059 Cite this Article
    M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, V. V. Tuchin. Multi-layered tissue head phantoms for noninvasive optical diagnostics[J]. Journal of Innovative Optical Health Sciences, 2015, 8(3): 1541005 Copy Citation Text show less
    References

    [1] M. Ferrari, L. Mottola, V. Quaresima, "Principles, techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. Rev. Can. Physiol. Appliquee 29, 463–487 (2004).

    [2] M. L. Clarke, J. Y. Lee, D. V. Samarov, D. W. Allen, M. Litorja, R. Nossal, J. Hwang, "Designing microarray phantoms for hyperspectral imaging validation," Biomed. Opt. Express 3, 1291–1299 (2012).

    [3] R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, C. K. Sen, "Dual-mode imaging of cutaneous tissue oxygenation and vascular function," J. Vis. Exp. 46, e2095 (2010).

    [4] J. Hwang, J. C. Ramella-Roman, R. Nordstrom, "Introduction: Feature issue on phantoms for the performance evaluation and validation of optical medical imaging devices," Biomed. Opt. Express 3, 1399–1403 (2012).

    [5] B. W. Pogue, M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).

    [6] G. Lamouche et al., "Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography," Biomed. Opt. Express 3, 1381–1398 (2012).

    [7] T. T. Nguyen, H. N. Le, M. Vo, Z. Wang, L. Luu, J. C. Ramella-Roman, "Three-dimensional phantoms for curvature correction in spatial frequency domain imaging," Biomed. Opt. Express 3, 1200– 1214 (2012).

    [8] A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O'Sullivan, S. Keene, H. Haghany, T. Quang, "Tissue phantoms in multicenter clinical trials for diffuse optical technologies," Biomed. Opt. Express 3, 966–971 (2012).

    [9] J. R. Cook, R. R. Bouchard, S. Y. Emelianov, "Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging," Biomed. Opt. Express 2, 3193– 3206 (2011).

    [10] A. V. Bykov, A. P. Popov, M. Kinnunen, T. Pryk ri, A. V. Priezzhev, R. Myllyl , "Skin phantoms with realistic vessel structure for OCT measurements," Proc. SPIE 7376, 73760F (2010).

    [11] A. V. Bykov, A. P. Popov, A. V. Priezzhev, R. Myllyla, "Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging," Proc. SPIE 8091, 80911R (2011).

    [12] A. Agrawal, M. Connors, A. Beylin, C.-P. Liang, D. Barton, Y. Chen, R. A. Drezek, T. J. Pfefer, "Characterizing the point spread function of retinal OCT devices with a model eye-based phantom," Biomed. Opt. Express 3, 1116–1126 (2012).

    [13] L. Luu, P. A. Roman, S. A. Mathews, J. C. Ramella- Roman, "Microfluidics based phantoms of superfi- cial vascular network," Biomed. Opt. Express 3, 1350–1364 (2012).

    [14] S. L. Jacques, B. Wang, R. Samatham, "Reflectance confocal microscopy of optical phantoms," Biomed. Opt. Express 3, 1162–1172 (2012).

    [15] A. J. Macnab, R. E. Gagnon, "Phantom testing of two clinical spatially-resolved NIRS instruments," J. Spectrosc. 19, 165–169 (2005).

    [16] R. J. Cooper, R. Eames, J. Brunker, L. C. Enfield, A. P. Gibson, J. C. Hebden, "A tissue equivalent phantom for simultaneous near-infrared optical tomography and EEG," Biomed. Opt. Express 1, 425–430 (2010).

    [17] D. K. Joseph, T. J. Huppert, M. A. Franceschini, D. A. Boas, "Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142–8151 (2006).

    [18] R. L. Barbour, R. Ansari, R. Al Abdi, H. L. Graber, M. B. Levin, Y. Pei, C. H. Schmitz, Y. Xu, "Validation of near infrared spectroscopic (NIRS) imaging using programmable phantoms," Proc. SPIE 6870, 687002–10 (2008).

    [19] R. L. Barbour, H. L. Graber, Y. Xu, Y. Pei, C. H. Schmitz, D. S. Pfeil, A. Tyagi, R. Andronica, D. C. Lee, S.-L. S. Barbour, J.D. Nichols, M. E.Pflieger, "A programmable laboratory testbed in support of evaluation of functional brain activation and connectivity," IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 20, 170–183 (2012).

    [20] D. D. Royston, R. S. Poston, S. A. Prahl, "Optical properties of scattering and absorbing materials used in the development of optical phantoms at 1064 nm," J. Biomed. Opt. 1, 110–116 (1996).

    [21] D. V. Samarov, M. L. Clarke, J. Y. Lee, D. W. Allen, M. Litorja, J. Hwang, "Algorithm validation using multicolor phantoms," Biomed. Opt. Express 3, 1300–1311 (2012).

    [22] R. C. Chang, P. Johnson, C. M. Stafford, J. Hwang, "Fabrication and characterization of a multilayered optical tissue model with embedded scattering microspheres in polymeric materials," Biomed. Opt. Express 3, 1326 (2012).

    [23] V. Kodach, N. Bosschaart, J. Kalkman, T. G. van Leeuwen, D. J. Faber, "Concentration dependent scattering coefficients of intralipid measured with OCT," Biomedical Optics 3-D Imaging, OSA Technical Digest (CD), paper BSuD11, Optical Society of America (2010).

    [24] P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, R. Oliver, "Thermal stability of intralipid optical phantoms," Appl. Spectrosc. 67, 993–996 (2013).

    [25] S. C. Kanick et al., "Scattering phase function spectrum makes reflectance spectrum measured from Intralipid phantoms and tissue sensitive to the device detection geometry," Biomed. Opt. Express 3, 1086–1100 (2012).

    [26] E. L. Hull, M. G. Nichols, T. H. Foster, "Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes," Phys. Med. Biol. 43, 3381 (1998).

    [27] V. O. Korhonen et al., "Light propagation in NIR spectroscopy of the human brain," IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).

    [28] T. Myllyl , A. Popov, V. Korhonen, A. Bykov, M. Kinnunen, "Optical sensing of a pulsating liquid in a brain-mimicking phantom," Proc. SPIE 8799, 87990X (2013).

    [29] H. S. S. Sorvoja, T. S. Myllyl , M. Y. Kirillin, E. A. Sergeeva, R. A. Myllyl , A. A. Elseoud, J. Nikkinen, O. Tervonen, V. Kiviniemi, "Non-invasive, MRIcompatible fibreoptic device for functional near-IR reflectometry of human brain," Quantum Electron. 40, 1067 (2010).

    [30] E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21–31 (1997).

    [31] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Press (2007).

    [32] M. Firbank, M. Hiraoka, M. Essenpreis, D. T. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650–950 nm," Phys. Med. Biol. 38, 503–510 (1993).

    [33] A. N. Bashkatov, E. A. Genina, V. I. Kochubey, V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," J. Phys. Appl. Phys. 38, 2543–2555 (2005).

    [34] P. van der Zee, M. Essenpreis, D. T. Delpy, "Optical properties of brain tissue," Proc. SPIE 1888, 454– 465 (1993).

    [35] P. van der Zee, "Measurement and modelling of the optical properties of human tissue in the near infrared," PhD Thesis, University College London, London (1992).

    [36] J. W. Pickering, S. A. Prahl, N. Van Wieringen, J. F. Beek, H. J. Sterenborg, M. J. Van Gemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt. 32, 399– 410 (1993).

    [37] S. A. Prahl, M. J. van Gemert, A. J. Welch, "Determining the optical properties of turbid media by using the adding–doubling method," Appl. Opt. 32, 559–568 (1993).

    [38] J. Fu, G. Quan, H. Gong, "A simple method for prediction of the reduced scattering coefficient in tissue-simulating phantoms," J. Innov. Opt. Health Sci. 3, 53–59 (2010).

    [39] H. Kang, M. L. Clarke, S. H. Lacerda, A. Karim, L. F. Pease, J. Hwang, "Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms," Biomed. Opt. Express 3, 1312–1325 (2012).

    [40] Q. Wang, K. Shastri, T. J. Pfefer, "Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue," Appl. Opt. 49, 5309–5320 (2010).

    [41] T. Moffitt, Y.-C. Chen, S. A. Prahl, "Preparation and characterization of polyurethane optical phantoms," J. Biomed. Opt. 11, 041103 (2006).

    [42] A. P. Popov, A. V. Priezzhev, R. Myllyl , "Effect of glucose concentration in a model light-scattering suspension on propagation of ultrashort laser pulses," Quantum Electron. 35, 1075 (2005).

    [43] E. Alarousu, J. T. Hast, M. T. Kinnunen, M. Y. Kirillin, R. A. Myllyla, J. Plucinski, A. P. Popov, A. V. Priezzhev, T. Prykari, J. Saarela, Z. Zhao, "Noninvasive glucose sensing in scattering media using OCT, PAS, and TOF techniques," Proc. SPIE 5474, 33–41 (2004).

    [44] M. T. Kinnunen, A. P. Popov, J. Plucinski, R. A. Myllyla, A. V. Priezzhev, "Measurements of glucose content in scattering media with time-of- flight technique: Comparison with Monte Carlo simulations," Proc. SPIE 5474, 181–191 (2004).

    [45] A. P. Popov, A. V. Bykov, S. Toppari, M. Kinnunen, A. V. Priezzhev, R. Myllyla, "Glucose sensing in flowing blood and intralipid by laser pulse timeof-fl ight and optical coherence tomography techniques," IEEE J. Sel. Top. Quantum Electron. 18, 1335–1342 (2012).

    [46] H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, M. J. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm," Appl. Opt. 30, 4507–4514 (1991).

    [47] S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, "Optical properties of Intralipid: A phantom medium for light propagation studies," Lasers Surg. Med. 12, 510–519 (1992).

    [48] A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).

    [49] D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, D. J. Faber, "Optical phantoms of varying geometry based on thin building blocks with controlled optical properties," J. Biomed. Opt. 15, 025001 (2010).

    [50] J. Pluciński, A. F. Frydrychowski, J. Kaczmarek, W. Juzwa, "Theoretical foundations for noninvasive measurement of variations in the width of the subarachnoid space," J. Biomed. Opt. 5, 291–299 (2000).

    [51] P. Moilanen, Z. Zhao, P. Karppinen, T. Karppinen, V. Kilappa, J. Pirhonen, R. Myllyl , E. Haeggstr€om, J. Timonen, "Photo-acoustic excitation and optical detection of fundamental flexural guided wave in coated bone phantoms," Ultrasound Med. Biol. 40, 521–531 (2014).

    [52] A. P. Popov, S. Haag, M. Meinke, J. Lademann, A. V. Priezzhev, R. Myllyl , "Effect of size of TiO2 nanoparticles applied onto glass slide and porcine skin on generation of free radicals under ultraviolet irradiation," J. Biomed. Opt. 14, 1011 (2009).

    [53] A. Sarkar, A. Shchukarev, A.-R. Leino, K. Kordas, J.-P. Mikkola, P. O. Petrov, E. S. Tuchina, A. P. Popov, M. E. Darvin, M. C. Meinke, J. Lademann, V. V. Tuchin, "Photocatalytic activity of TiO2 nanoparticles: Effect of thermal annealing under various gaseous atmospheres," Nanotechnology 23, 475711 (2012).

    M. S. Wróbel, A. P. Popov, A. V. Bykov, M. Kinnunen, M. Jedrzejewska-Szczerska, V. V. Tuchin. Multi-layered tissue head phantoms for noninvasive optical diagnostics[J]. Journal of Innovative Optical Health Sciences, 2015, 8(3): 1541005
    Download Citation