• Acta Optica Sinica
  • Vol. 36, Issue 10, 1011005 (2016)
Sun Jiasong1、2、*, Zhang Yuzhen2, Chen Qian2, and Zuo Chao1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1011005 Cite this Article Set citation alerts
    Sun Jiasong, Zhang Yuzhen, Chen Qian, Zuo Chao. Fourier Ptychographic Microscopy: Theory, Advances, and Applications[J]. Acta Optica Sinica, 2016, 36(10): 1011005 Copy Citation Text show less
    References

    [1] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 2011, 65(9): 967-980.

    [2] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy[J]. Nature Photonics, 2013, 7(9): 739-745.

    [3] Appleton B, Bradley A P, Wildermoth M. Towards optimal image stitching for virtual microscopy[J]. Proceedings of the Digital Image Computering on Techniques and Applications, 2006.

    [4] Ma B, Zimmermann T, Rohde M, et al. Use of autostitch for automatic stitching of microscope images[J]. Micron, 2007, 38(5): 492-499.

    [5] Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: A review[J]. Chinese J Lasers, 2016, 43(6): 0609002.

    [6] Gonsalves R A. Phase retrieval from modulus data[J]. Journal of the Optical Society of America, 1976, 66(9): 961-964.

    [7] Fienup J R. Phase retrieval algorithms: A comparison[J]. Applied Optics, 1982, 21(15): 2758-2769.

    [8] Elser V. Phase retrieval by iterated projections[J]. Journal of the Optical Society of America A, 2003, 20(1): 40-55.

    [9] Candes E J, Eldar Y C, Strohmer T, et al. Phase retrieval via matrix completion[J]. Siam Journal on Imaging Sciences, 2013, 6(1): 199-225.

    [10] Candes E J, Strohmer T, Voroninski V. Phase lift: Exact and stable signal recovery from magnitude measurements via convex programming[J]. Communications on Pure and Applied Mathematics, 2013, 66(8): 1241-1274.

    [11] Candes E J, Li X, Soltanolkotabi M. Phase retrieval via wirtinger flow: Theory and algorithms[J]. IEEE Transactions on Information Theory, 2015, 61(4): 1985-2007.

    [12] Waldspurger I, d′Aspremont A, Mallat S. Phase recovery, max cut and complex semidefinite programming[J]. Mathematical Programming, 2015, 149(1): 47-81.

    [13] Meinel A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11): 2501-2504.

    [14] Turpin T M, Gesell L H, Lapides J H, et al. Theory of the synthetic aperture microscope[C]. SPIE, 1995, 2566: 230-240.

    [15] Jang J S, Javidi B. Three-dimensional synthetic aperture integral imaging[J]. Optics Letters, 2002, 27(13): 1144-1146.

    [16] Stern A, Javidi B. 3D computational synthetic aperture integral imaging (COMPSAII)[J]. Optics Express, 2003, 11(19): 2446-2451.

    [17] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Synthetic aperture superresolution with multiple off-axis holograms[J]. Journal of the Optical Society of America A, 2006, 23(12): 3162-3170.

    [18] Di J, Zhao J, Jiang H, et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning[J]. Applied Optics, 2008, 47(30): 5654-5659.

    [19] Hillman T R, Gutzler T, Alexandrov S A, et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy[J]. Optics Express, 2009, 17(10): 7873-7892.

    [20] Granero L, MicóV, Zalevsky Z, et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information[J]. Applied Optics, 2010, 49(5): 845-857.

    [21] Gutzler T, Hillman T R, Alexandrov S A, et al. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue[J]. Optics Letters, 2010, 35(8): 1136-1138.

    [22] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy[J]. Optics Letters, 2013, 38(22): 4845-4848.

    [23] Pacheco S, Salahieh B, Milster T, et al. Transfer function analysis in epi-illumination Fourier ptychography[J]. Optics Letters, 2015, 40(22): 5343-5346.

    [24] Faulkner H M, Rodenburg J M. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

    [25] Rodenburg J M, Hurst A C, Cullis A G, et al. Hard-X-ray lensless imaging of extended objects[J]. Physical Review Letters, 2007, 98(3): 034801.

    [26] Rodenburg J M. Ptychography and related diffractive imaging methods[J]. Advances in Imaging and Electron Physics, 2008, 150: 87-184.

    [27] Yao Yudong, Liu Cheng, Pan Xingchen, et al. Research status and development trend of PIE imaging method[J]. Chinese J Lasers, 2016, 43(6): 0609001.

    [28] Horstmeyer R, Yang C. A phase space model of Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(1): 338-358.

    [29] Maiden A M, Rodenburg J M. An improved ptychographical phase retrieval algorithm for diffractive imaging[J]. Ultramicroscopy, 2009, 109(10): 1256-1262.

    [30] Thibault P, Dierolf M, Bunk O, et al. Probe retrieval in ptychographic coherent diffractive imaging[J]. Ultramicroscopy, 2009, 109(4): 338-343.

    [31] Maiden A M, Humphry M J, Rodenburg J M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach[J]. Journal of the Optical Society of America A, 2012, 29(8): 1606-1614.

    [32] Godden T M, Suman R, Humphry M J, et al. Ptychographic microscope for three-dimensional imaging[J]. Optics Express, 2014, 22(10): 12513-12523.

    [33] Maiden A M, Humphry M J, Sarahan M C, et al. An annealing algorithm to correct positioning errors in ptychography[J]. Ultramicroscopy, 2012, 120: 64-72.

    [34] Edo T B, Batey D J, Maiden A M, et al. Sampling in X-ray ptychography[J]. Physical Review A, 2013, 87(5): 053850.

    [35] Batey D J, Edo T B, Rau C, et al. Reciprocal-space up-sampling from real-space over sampling in X-ray ptychography[J]. Physical Review A, 2014, 89(4): 043812.

    [36] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 2013, 494(7435): 68-71.

    [37] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 2014, 138: 13-21.

    [38] Karl R, Bevis C, Lopez-Rios R, et al. Spatial, spectral, and polarization multiplexed ptychography[J]. Optics Express, 2015, 23(23): 30250-30258.

    [39] Bian L, Suo J, Situ G, et al. Content adaptive illumination for Fourier ptychography[J]. Optics Letters, 2014, 39(23): 6648-6651.

    [40] Dong S, Bian Z, Shiradkar R, et al. Sparsely sampled Fourier ptychography[J]. Optics Express, 2014, 22(5): 5455-5464.

    [41] Dong S, Shiradkar R, Nanda P, et al. Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging[J]. Biomedical Optics Express, 2014, 5(6): 1757-1767.

    [42] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope[J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.

    [43] Guo K, Dong S, Nanda P, et al. Optimization of sampling pattern and the design of Fourier ptychographic illuminator[J]. Optics Express, 2015, 23(5): 6171-6180.

    [44] Tian L, Liu Z, Yeh L-H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy[J]. Optica, 2015, 2(10): 904-911.

    [45] Zhang Y, Jiang W, Tian L, et al. Self-learning based Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(14): 18471-18486.

    [46] Bian Z, Dong S, Zheng G. Adaptive system correction for robust Fourier ptychographic imaging[J]. Optics Express, 2013, 21(26): 32400-32410.

    [47] Horstmeyer R, Ou X, Chung J, et al. Overlapped Fourier coding for optical aberration removal[J]. Optics Express, 2014, 22(20): 24062-24080.

    [48] Jiang W, Zhang Y, Dai Q. Multi-channel super-resolution with Fourier ptychographic microscopy[J]. Proceedings of the SPIE, 2014, 9273: 927336.

    [49] Ou X, Zheng G, Yang C. Embedded pupil function recovery for Fourier ptychographic microscopy[J]. Optics Express, 2014, 22(5): 4960-4972.

    [50] Bian L, Suo J, Zheng G, et al. Fourier ptychographic reconstruction using Wirtinger flow optimization[J]. Optics Express, 2015, 23(4): 4856-4866.

    [51] Horstmeyer R, Chen R Y, Ou X, et al. Solving ptychography with a convex relaxation[J]. New Journal of Physics, 2015, 17(5): 053044.

    [52] Li P, Batey D J, Edo T B, et al. Separation of three-dimensional scattering effects in tilt-series Fourier ptychography[J]. Ultramicroscopy, 2015, 158: 1-7.

    [53] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: Principle, implementation and characterization[J]. Optics Express, 2015, 23(3): 3472-3491.

    [54] Tian L, Waller L. 3D intensity and phase imaging from light field measurements in an LED array microscope[J].Optica, 2015, 2(2): 104-111.

    [55] Xie Zongliang, Ma Haotong, Ren Ge, et al. Research on the key parameters of aperture-scanning Fourier ptychography[J]. Acta Optica Sinica, 2015, 35(10): 1011002.

    [56] Xie Z, Ma H, Qi B, et al. Pupil-resizing Fourier ptychography[C]. SPIE, 2015,9795: 979502.

    [57] Yeh L-H, Dong J, Zhong J, et al. Experimental robustness of Fourier ptychography phase retrieval algorithms[J]. Optics Express, 2015, 23(26): 33214-33240.

    [58] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy[J]. Optics Express, 2016, 24(18): 20724-20744.

    [59] Zhang Y, Jiang W, Dai Q. Nonlinear optimization approach for Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(26): 33822-33835.

    [60] Dong S, Guo K, Nanda P, et al. FP scope: A field-portable high-resolution microscope using a cellphone lens[J]. Biomedical Optics Express, 2014, 5(10): 3305-3310.

    [61] Dong S, Horstmeyer R, Shiradkar R, et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J]. Optics Express, 2014, 22(11): 13586-13599.

    [62] Dong S, Nanda P, Shiradkar R, et al. High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography[J]. Optics Express, 2014, 22(17): 20856-20870.

    [63] Li Z, Zhang J, Wang X, et al. High resolution integral holography using Fourier ptychographic approach[J]. Optics Express, 2014, 22(26): 31935-31947.

    [64] Williams A, Chung J, Ou X, et al. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis[J]. Journal of Biomedical Optics, 2014, 19(6): 066007.

    [65] Chung J, Ou X, Kulkarni R P, et al. Counting White blood cells from a blood smear using Fourier ptychographic microscopy[J]. Plos One, 2015, 10(7): e0133489.

    [66] Dong S, Liao J, Guo K, et al. Resolution doubling with a reduced number of image acquisitions[J]. Biomedical Optics Express, 2015, 6(8): 2946-2952.

    [67] Dong S, Nanda P, Guo K, et al. Incoherent Fourier ptychographic photography using structured light[J]. Photonics Research, 2015, 3(1): 19-23.

    [68] Guo K, Bian Z, Dong S, et al. Microscopy illumination engineering using a low-cost liquid crystal display[J]. Biomedical Optics Express, 2015, 6(2): 574-579.

    [69] Horstmeyer R, Ou X, Zheng G, et al. Digital pathology with Fourier ptychography[J]. Computerized Medical Imaging and Graphics, 2015, 42: 38-43.

    [70] Kuang C, Ma Y, Zhou R, et al. Digital micromirror device-based laser-illumination Fourier ptychographic microscopy[J]. Optics Express, 2015, 23(21): 26999-27010.

    [71] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy[J]. Light: Science & Applications, 2015, 4(3): e261.

    [72] Xie Z, Ma H, Qi B, et al. Aperture-scanning Fourier ptychographic encoding with phase modulation[J]. Chinese Physics Letters, 2015, 32(12): 124203.

    [73] Chung J, Kim J, Ou X, et al. Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography[J]. Biomedical Optics Express, 2016, 7(2): 352-368.

    [74] Pacheco S, Zheng G, Liang R. Reflective Fourier ptychography[J]. Journal of Biomedical Optics, 2016, 21(2): 026010.

    [75] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by usinga simple LED array[J]. Optics Letters, 2011, 36(20): 3987-3989.

    [76] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an LED array[J]. Optics Letters, 2014, 39(5): 1326-1329.

    [77] Guo K, Liao J, Bian Z, et al. Instant scope: A low-cost whole slide imaging system with instant focal plane detection[J]. Biomedical Optics Express, 2015, 6(9): 3210-3216.

    [78] Liu Z, Tian L, Waller L. Multi-mode microscopy in real-time with LED array illumination[C]. Proceedings of the SPIE, 2015, 9336: 93362M.

    [79] Tian L, Waller L. Quantitative differential phase contrast imaging in an LED array microscope[J]. Optics Express, 2015, 23(9): 11394-11403.

    [80] Zuo C, Sun J, Feng S, et al. Programmable colored illumination microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement[J]. Optics and Lasers in Engineering, 2016, 78:35-47.

    [81] Sun J, Chen Q, Zhang Y, et al. Optimized multiplexing super-resolution imaging based on a Fourier ptychographic microscope[C]. Proceedings of the SPIE, 2015, 9672: 967219.

    [82] Sun J, Zhang Y, Zuo C, et al. Coded multi-angular illumination for Fourier ptychography based on Hadamard codes[J]. Proceedings of the SPIE, 2015, 9524: 95242C.

    [83] Sun J, Chen Q, Zhang Y, et al. Efficient positional misalignment correction method for Fourier ptychographic microscopy[J]. Biomedical Optics Express, 2016, 7(4): 1336-1350.

    [84] Sun J, Chen Q, Zhang Y, et al. Sampling criteria for Fourier ptychographic microscopy in object space and frequency space[J]. Optics Express, 2016, 24(14): 15765-15781.

    [85] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87.

    [86] Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

    [87] Gustafsson M G L, Shao L, Carlton P M, et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12): 4957-4970.

    [88] Mudry E, Belkebir K, Girard J, et al. Structured illumination microscopy using unknown speckle patterns[J]. Nature Photonics, 2012, 6(5): 312-315.

    [89] Wagner O, Schwarz A, Shemer A, et al. Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns[J]. Applied Optics, 2015, 54(13): D51-D60.

    [90] Yilmaz H, van Putten E G, Bertolotti J, et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging[J]. Optica, 2015, 2(5): 424-429.

    CLP Journals

    [1] CUI Bo-chuan, WANG Jian-li, YAO Kai-nan, CHEN Tao. Experimental Study on Micro Quantitative Phase Imaging by Quadriwave Shearing Interferometry[J]. Acta Photonica Sinica, 2018, 47(7): 718001

    [2] Ming Zhao, Ximing Wang, Xiaohui Zhang, Wang Zhang. Experimental Research onMacroscopic Fourier Ptychography Super-Resolution Imaging[J]. Laser & Optoelectronics Progress, 2019, 56(12): 121101

    [3] Lin Ziqiang, Ma Xiao, Lin Jinxin, Yang Jiaqi, Li Shiping, Zhong Jingang. Fourier Ptychographic Microscopy Based on Rotating Arc-shaped Array of LEDs[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71102

    Sun Jiasong, Zhang Yuzhen, Chen Qian, Zuo Chao. Fourier Ptychographic Microscopy: Theory, Advances, and Applications[J]. Acta Optica Sinica, 2016, 36(10): 1011005
    Download Citation