• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Luo Zhijun1, Liu Yanan1, Chen Menglin1, Deng Lin1, and Gan Zongsong1、2、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180559 Cite this Article
    Luo Zhijun, Liu Yanan, Chen Menglin, Deng Lin, Gan Zongsong. Industrialization oriented technology of dual-beam super-resolution data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

    [2] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144–147.

    [3] Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910–913.

    [4] Andrew T L, Tsai H Y, Menon R. Confining light to deep subwavelength dimensions to enable optical nanopatterning[J]. Science, 2009, 324(5929): 917–921.

    [5] Scott T F, Kowalski B A, Sullivan A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913–917.

    [6] Stocker M P, Li L J, Gattass R R, et al. Multiphoton photoresists giving nanoscale resolution that is inversely dependent on exposure time[J]. Nature Chemistry, 2011, 3(3): 223–227.

    [7] Cao Y Y, Gan Z S, Jia B H, et al. High-photosensitive resin for super-resolution direct-laser-writing based on photoinhibited polymerization[J]. Optics Express, 2011, 19(20): 19486–19494.

    [8] Fischer J, Von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography[J]. Advanced Materials, 2010, 22(32): 3578–3582.

    [9] Harke B, Dallari W, Grancini G, et al. Polymerization inhibition by triplet state absorption for nanoscale lithography[J]. Advanced Materials, 2013, 25(6): 904–909.

    [10] Wollhofen R, Katzmann J, Hrelescu C, et al. 120 nm resolution and 55 nm structure size in STED-lithography[J]. Optics Express, 2013, 21(9): 10831–10840.

    [11] Liu T C, Zhang L, Sun J, et al. Optical properties of dithienylethene and its applications in super-resolution optical storage[J]. Chinese Journal of Lasers, 2018, 45(9): 0903001.

    [12] G ttfert F, Wurm C A, Mueller V, et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution[J]. Biophysical Journal, 2013, 105(1): L01–L03.

    [13] Hell S, Jakobs S, Andresen M, et al. Method and apparatus for storing a three-dimensional arrangement of data bits in a solid-state body: 20070047287[P]. 2007-03-01.

    [14] Polyakova S M, Belov V N, Bossi M L, et al. Synthesis of photochromic compounds for aqueous solutions and focusable light[J]. European Journal of Organic Chemistry, 2011, 2011(18): 3301–3312.

    [15] Gan Z S, Evans R A, Gu M. Far-field super-resolution recording and reading towards petabyte optical discs[C]//Frontiers in Optics 2016, Rochester, New York United States, 2016.

    [16] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780–782.

    [17] Nielson R, Kaehr B, Shear J B. Microreplication and design of biological architectures using dynamic‐mask multiphoton lithography[J]. Small, 2009, 5(1): 120–125.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Luo Zhijun, Liu Yanan, Chen Menglin, Deng Lin, Gan Zongsong. Industrialization oriented technology of dual-beam super-resolution data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation