• Photonics Research
  • Vol. 8, Issue 7, 1203 (2020)
Jiafeng Lu1, Fan Shi1, Linghao Meng1, Longkun Zhang1, Linping Teng1, Zhengqian Luo2, Peiguang Yan3, Fufei Pang1、4, and Xianglong Zeng1、*
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
  • 2Department of Electronic Engineering, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
  • 3Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, China
  • 4e-mail: ffpang@shu.edu.cn
  • show less
    DOI: 10.1364/PRJ.386954 Cite this Article Set citation alerts
    Jiafeng Lu, Fan Shi, Linghao Meng, Longkun Zhang, Linping Teng, Zhengqian Luo, Peiguang Yan, Fufei Pang, Xianglong Zeng. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser[J]. Photonics Research, 2020, 8(7): 1203 Copy Citation Text show less
    References

    [1] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [2] H. Guo, M. Karpov, E. Lucas, A. Kordts, M. H. P. Pfeiffer, G. Lichachev, V. E. Lobanov, M. L. Gorodetsky, T. J. Kippenberg. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94-102(2017).

    [3] B. Li, S. W. Huang, Y. Li, C. W. Wong, K. K. Y. Wong. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun., 8, 61(2017).

    [4] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photon., 8, 465-540(2016).

    [5] U. Teğin, E. Kakkava, B. Rahmani, D. Psaltis, C. Moser. Spatiotemporal self-similar fiber laser. Optica, 6, 1412-1415(2019).

    [6] T. Mayteevarunyoo, B. A. Malomed, D. V. Skryabin. Spatiotemporal dissipative solitons and vortices in a multi-transverse-mode fiber laser. Opt. Express, 27, 37364-37373(2019).

    [7] U. Teğin, B. Rahmani, E. Kakkava, N. Borhani, C. Moser, D. Psaltis. Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks. APL Photon., 5, 030804(2019).

    [8] S. V. Smirnov, S. Sugavanam, O. A. Gorbunov, D. V. Churkin. Generation of spatio-temporal extreme events in noise-like pulses NPE mode-locked fibre laser. Opt. Express, 25, 23122-23127(2017).

    [9] H. Wu, C. Huang, J. Huang. Spatiotemporal dynamics of a passively mode-locked Nd:GdVO4 laser. Opt. Express, 15, 2391-2397(2007).

    [10] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [11] D. G. Grier. A revolution in optical manipulation. Nature, 424, 810-816(2003).

    [12] S. Kawata, H. B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices. Nature, 412, 697-698(2001).

    [13] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [14] J. Denschlag, J. Simsarian, D. Feder, C. W. Clark, L. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson, W. P. Reinhardt. Generating solitons by phase engineering of a Bose-Einstein condensate. Science, 287, 97-101(2000).

    [15] A. F. J. Runge, N. G. R. Broderick, M. Erkintalo. Observation of soliton explosions in a passively mode-locked fiber laser. Optica, 2, 36-39(2015).

    [16] P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, J. M. Dudley. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [17] F. Krausz, T. Brabec, C. Spielmann. Self-starting passive mode locking. Opt. Lett., 16, 235-237(1991).

    [18] E. Kelleher, J. Travers. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Opt. Lett., 39, 1398-1401(2014).

    [19] A. Chong, L. Wright, F. Wise. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. Rep. Prog. Phys., 78, 113901(2015).

    [20] J. Peng, H. Zeng. Build-Up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photon. Rev., 12, 1800009(2018).

    [21] X. Liu, Y. Cui. Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photon., 1, 016003(2019).

    [22] Y. Cui, X. Liu. Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res., 7, 423-430(2019).

    [23] X. Liu, M. Pang. Revealing the buildup dynamics of harmonic mode-locking states in ultrafast lasers. Laser Photon. Rev., 13, 1800333(2019).

    [24] X. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from Q switching to mode locking in a soliton laser. Phys. Rev. Lett., 123, 093901(2019).

    [25] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 7, 354-362(2013).

    [26] H. R. Stuart. Dispersive multiplexing in multimode optical fiber. Science, 289, 281-283(2000).

    [27] L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, F. W. Wise. Multimode nonlinear fiber optics: massively parallel numerical solver, tutorial, and outlook. IEEE J. Sel. Top. Quantum Electron., 24, 5100516(2018).

    [28] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [29] W. H. Renninger, F. W. Wise. Optical solitons in graded-index multimode fibres. Nat. Commun., 4, 1719(2013).

    [30] L. G. Wright, D. N. Christodoulides, F. W. Wise. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics, 9, 306-310(2015).

    [31] H. Qin, X. Xiao, P. Wang, C. Yang. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett., 43, 1982-1985(2018).

    [32] R. Chen, F. Sun, J. Yao, J. Wang, H. Min, A. Wang, Q. Zhan. Mode locked all-fiber laser generating optical vortex pulses with tunable repetition rate. Appl. Phys. Lett., 112, 261103(2018).

    [33] Z. Li, J. Peng, Q. Li, Y. Gao, J. Li, Q. Cao. Generation of picosecond vortex beam in a self-mode-locked Nd:YVO4 laser. Optoelectron. Lett., 13, 188-191(2017).

    [34] S. D. Lim, H. C. Park, I. K. Hwang, B. Y. Kim. Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber. Opt. Express, 16, 6125-6133(2008).

    [35] W. Zhang, K. Wei, L. Huang, D. Mao, B. Jiang, F. Gao, G. Zhang, T. Mei, J. Zhao. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Opt. Express, 24, 19278-19285(2016).

    [36] P. Z. Dashti, F. Alhassen, H. P. Lee. Transfer of orbital angular momentum between acoustic and optical vortices in optical fiber. Phys. Rev. Lett., 96, 043064(2006).

    [37] Y. Li, L. Huang, H. Han, L. Gao, Y. Cao, Y. Gong, W. Zhang, F. Gao, I. P. Ikechukwu, T. Zhu. Acousto-optic tunable ultrafast laser with vector-mode-coupling-induced polarization conversion. Photon. Res., 7, 798-805(2019).

    [38] J. Lu, L. Meng, F. Shi, X. Liu, Z. Luo, P. Yan, L. Huang, F. Pang, T. Wang, X. Zeng, P. Zhou. Dynamic mode-switchable optical vortex beams using acousto-optic mode converter. Opt. Lett., 43, 5841-5844(2018).

    [39] J. Lu, L. Meng, F. Shi, X. Zeng. A mode-locked fiber laser with switchable high-order modes using intracavity acousto-optic mode converter. Optical Fiber Communication Conference (OFC), W3C.3(2019).

    [40] M. A. Yavorsky, D. V. Vikulin, E. V. Barshak, B. P. Lapin, C. N. Alexeyev. Revised model of acousto-optic interaction in optical fibers endowed with a flexural wave. Opt. Lett., 44, 598-601(2019).

    [41] R. Li, J. Zou, W. Li, K. Wang, T. Du, H. Wang, X. Sun, Z. Xiao, H. Fu, Z. Luo. Ultrawide-space and controllable soliton molecules in a narrow-linewidth mode-locked fiber laser. IEEE Photon. Technol. Lett., 30, 1423-1426(2018).

    [42] Y. Shen, G. Ren, Y. Yang, S. Yao, Y. Wu, Y. Jiang, Y. Xu, W. Jin, S. Jian. Switchable narrow linewidth fiber laser with LP11 transverse mode output. Opt. Laser Technol., 98, 1-6(2018).

    [43] S. Ramachandran, P. Kristensen. Optical vortices in fibers. Nanophotonics, 2, 455-474(2013).

    [44] J. Wang, A. E. Willner. Twisted communications using orbital angular momentum (Tutorial Talk). Optical Fiber Communication Conference, Th1H.5(2016).

    [45] J. Zou, H. Wang, W. Li, T. Du, B. Xu, N. Chen, Z. Cai, Z. Luo. Visible-wavelength all-fiber vortex laser. IEEE Photon. Technol. Lett., 31, 1487-1490(2019).

    [46] J. Zou, Z. Kang, R. Wang, H. Wang, J. Liu, C. Dong, X. Jiang, B. Xu, Z. Cai, G. Qin, H. Zhang, Z. Luo. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods. Nanoscale, 11, 15991-16000(2019).

    [47] Z. Qin, G. Xie, H. Gu, T. Hai, P. Yuan, J. Ma, L. Qian. Mode-locked 2.8-μm fluoride fiber laser: from soliton to breathing pulse. Adv. Photon., 1, 065001(2019).

    [48] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [49] L. Yan, P. Gregg, E. Karimi, A. Rubano, L. Marrucci, R. Boyd, S. Ramachandran. Q-plate enabled spectrally diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy. Optica, 2, 900-903(2015).

    [50] J. Lu, Y. Dai, Q. Li, Y. Zhang, C. Wang, F. Pang, T. Wang, X. Zeng. Fiber nanogratings induced by femtosecond pulse laser direct writing for in-line polarizer. Nanoscale, 11, 908-914(2019).

    CLP Journals

    [1] Sha Wang, Zhicheng Zhang, Guoliang Deng, Shouhuan Zhou. Research progress on direct generation of ultrashort pulse OAM vortex beams (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201061

    Jiafeng Lu, Fan Shi, Linghao Meng, Longkun Zhang, Linping Teng, Zhengqian Luo, Peiguang Yan, Fufei Pang, Xianglong Zeng. Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser[J]. Photonics Research, 2020, 8(7): 1203
    Download Citation