• Chinese Journal of Lasers
  • Vol. 49, Issue 15, 1507401 (2022)
Houxiang Xu, Bin Xu***, Jichuan Xiong**, and Xuefeng Liu*
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • show less
    DOI: 10.3788/CJL202249.1507401 Cite this Article Set citation alerts
    Houxiang Xu, Bin Xu, Jichuan Xiong, Xuefeng Liu. Research Progress of Surface Plasmon Resonance and Local Surface Plasmon Resonance in Virus Detection[J]. Chinese Journal of Lasers, 2022, 49(15): 1507401 Copy Citation Text show less
    References

    [1] Tscherne D M, García-Sastre A. Virulence determinants of pandemic influenza viruses[J]. The Journal of Clinical Investigation, 121, 6-13(2011).

    [2] Zhang Y H, Zhao Y L, Yan J J et al. Review of the world’s major epidemics from August to September in 2021[J]. Infectious Disease Information, 34, 477-480(2021).

    [3] Antiochia R. Developments in biosensors for CoV detection and future trends[J]. Biosensors and Bioelectronics, 173, 112777(2021).

    [4] Cheng X H, Chen G, Rodriguez W R. Micro- and nanotechnology for viral detection[J]. Analytical and Bioanalytical Chemistry, 393, 487-501(2009).

    [5] Carter L J, Garner L V, Smoot J W et al. Assay techniques and test development for COVID-19 diagnosis[J]. ACS Central Science, 6, 591-605(2020).

    [6] Ménard-Moyon C, Bianco A, Kalantar-Zadeh K. Two-dimensional material-based biosensors for virus detection[J]. ACS Sensors, 5, 3739-3769(2020).

    [7] Ozer T, Geiss B J, Henry C S. Review-chemical and biological sensors for viral detection[J]. Journal of the Electrochemical Society, 167, 037523(2020).

    [8] Burke D S, Nisalak A, Ussery M A. Antibody capture immunoassay detection of Japanese encephalitis virus immunoglobulin m and g antibodies in cerebrospinal fluid[J]. Journal of Clinical Microbiology, 16, 1034-1042(1982).

    [9] Lu S M, Lin S, Zhang H R et al. Methods of respiratory virus detection: advances towards point-of-care for early intervention[J]. Micromachines, 12, 697(2021).

    [10] Vunsh R, Rosner A, Stein A. The use of the polymerase chain reaction (PCR) for the detection of bean yellow mosaic virus in gladiolus[J]. Annals of Applied Biology, 117, 561-569(1990).

    [11] Boonham N, Kreuze J, Winter S et al. Methods in virus diagnostics: from ELISA to next generation sequencing[J]. Virus Research, 186, 20-31(2014).

    [12] Tam Y J, Zeenathul N A, Rezaei M A et al. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA[J]. Biotechnology and Applied Biochemistry, 64, 735-744(2017).

    [13] Nguyen A H, Sim S J. Nanoplasmonic biosensor: detection and amplification of dual bio-signatures of circulating tumor DNA[J]. Biosensors and Bioelectronics, 67, 443-449(2015).

    [14] Guo X W. Surface plasmon resonance based biosensor technique: a review[J]. Journal of Biophotonics, 5, 483-501(2012).

    [15] Wang D P, Loo J F C, Chen J J et al. Recent advances in surface plasmon resonance imaging sensors[J]. Sensors, 19, 1266(2019).

    [16] Haes A J, Zou S L, Schatz G C et al. A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles[J]. The Journal of Physical Chemistry B, 108, 109-116(2004).

    [17] Liu X, Atwater M, Wang J H et al. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands[J]. Colloids and Surfaces B: Biointerfaces, 58, 3-7(2007).

    [18] Nehl C L, Hafner J H. Shape-dependent plasmon resonances of gold nanoparticles[J]. Journal of Materials Chemistry, 18, 2415(2008).

    [19] Sui M, Kunwar S, Pandey P et al. Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles[J]. Scientific Reports, 9, 16582(2019).

    [20] Lee J H, Kim B C, Oh B K et al. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 9, 1018-1026(2013).

    [21] Hassan M M, Sium F S, Islam F et al. A review on plasmonic and metamaterial based biosensing platforms for virus detection[J]. Sensing and Bio-Sensing Research, 33, 100429(2021).

    [22] Shrivastav A M, Cvelbar U, Abdulhalim I. A comprehensive review on plasmonic-based biosensors used in viral diagnostics[J]. Communications Biology, 4, 70(2021).

    [23] Shi Y, Li Z, Liu P Y et al. On-chip optical detection of viruses: a review[J]. Advanced Photonics Research, 2, 2000150(2021).

    [24] Takemura K. Surface plasmon resonance (SPR)- and localized SPR (LSPR)-based virus sensing systems: optical vibration of nano- and micro-metallic materials for the development of next-generation virus detection technology[J]. Biosensors, 11, 250(2021).

    [25] Slifka M K, Antia R, Whitmire J K et al. Humoral immunity due to long-lived plasma cells[J]. Immunity, 8, 363-372(1998).

    [26] Jeyanathan M, Afkhami S, Smaill F et al. Immunological considerations for COVID-19 vaccine strategies[J]. Nature Reviews Immunology, 20, 615-632(2020).

    [27] Bohn M K, Lippi G, Horvath A et al. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence[J]. Clinical Chemistry and Laboratory Medicine, 58, 1037-1052(2020).

    [28] Younes N, Al-Sadeq D W, Al-Jighefee H et al. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2[J]. Viruses, 12, 582(2020).

    [29] Hou H Y, Wang T, Zhang B et al. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019[J]. Clinical & Translational Immunology, 9, e01136(2020).

    [30] Zhang J, Zhang X M, Liu J H et al. Serological detection of 2019-nCoV respond to the epidemic: a useful complement to nucleic acid testing[J]. International Immunopharmacology, 88, 106861(2020).

    [31] Racine R, Winslow G M. IgM in microbial infections: taken for granted?[J]. Immunology Letters, 125, 79-85(2009).

    [32] dos Santos G M C, Alves C R, Pinto M A et al. Detection of antibodies against hepatitis A virus (HAV) by a surface plasmon resonance (SPR) biosensor: a new diagnosis tool based on the major HAV capsid protein VP1 (SPR-HAVP1)[J]. Sensors, 21, 3167(2021).

    [33] Xu C, Wang C Q, Duan Z G et al. Identification of duck plague based on surface plasmon resonance with DPV gC prokaryotic expression protein[J]. Chinese Veterinary Science, 50, 1509-1514(2020).

    [34] Basso C R, Malossi C D, Haisi A et al. Fast and reliable detection of SARS-CoV-2 antibodies based on surface plasmon resonance[J]. Analytical Methods: Advancing Methods and Applications, 13, 3297-3306(2021).

    [35] Jahanshahi P, Wei Q, Jie Z et al. Kinetic analysis of IgM monoclonal antibodies for determination of dengue sample concentration using SPR technique[J]. Bioengineered, 8, 239-247(2017).

    [36] Funari R, Chu K Y, Shen A Q. Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip[J]. Biosensors and Bioelectronics, 169, 112578(2020).

    [37] Wang S H, Kuo C W, Lo S C et al. Spectral image contrast-based flow digital nanoplasmon-metry for ultrasensitive antibody detection[J]. Journal of Nanobiotechnology, 20, 6(2022).

    [38] Link S, El-Sayed M A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant[J]. The Journal of Physical Chemistry B, 109, 10531-10532(2005).

    [39] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition[J]. The Journal of Physical Chemistry B, 110, 19220-19225(2006).

    [40] Jain P K, Eustis S, El-Sayed M A. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model[J]. The Journal of Physical Chemistry B, 110, 18243-18253(2006).

    [41] Versiani A F, Martins E M N, Andrade L M et al. Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections[J]. Scientific Reports, 10, 11302(2020).

    [42] Jiang Q S, Chandar Y J, Cao S S et al. Rapid, point-of-care, paper-based plasmonic biosensor for zika virus diagnosis[J]. Advanced Biosystems, 1, e1700096(2017).

    [43] Huang H W, Tang C R, Zeng Y L et al. Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods[J]. Colloids and Surfaces B: Biointerfaces, 71, 96-101(2009).

    [44] Jin Z Z, Jin F F, Liu X et al. Mechanism and clinical significance of co-positive serological pattern of HBsAg and anti-HBS[J]. Laboratory Medicine and Clinic, 16, 566-571(2019).

    [45] Leary T P, Gutierrez R A, Muerhoff A S et al. A chemiluminescent, magnetic particle-based immunoassay for the detection of hepatitis C virus core antigen in human serum or plasma[J]. Journal of Medical Virology, 78, 1436-1440(2006).

    [46] Laperche S, Nübling C M, Stramer S L et al. Sensitivity of hepatitis C virus core antigen and antibody combination assays in a global panel of window period samples[J]. Transfusion, 55, 2489-2498(2015).

    [47] Ly T D, Ebel A, Faucher V et al. Could the new HIV combined p24 antigen and antibody assays replace p24 antigen specific assays?[J]. Journal of Virological Methods, 143, 86-94(2007).

    [48] Sarcina L, Mangiatordi G F, Torricelli F et al. Surface plasmon resonance assay for label-free and selective detection of HIV-1 p24 protein[J]. Biosensors, 11, 180(2021).

    [49] Sharma P K, Kumar J S, Singh V V et al. Surface plasmon resonance sensing of Ebola virus: a biological threat[J]. Analytical and Bioanalytical Chemistry, 412, 4101-4112(2020).

    [50] Lu C Y, Li Y P, Yuan Y F et al. Ultrasensitive biochemical detection by employing two-dimensional Ti3C2Tx MXene nanosheets[J]. Laser & Optoelectronics Progress, 57, 091601(2020).

    [51] Peng F, Zhang L, He J A. Graphene assisted detection of HIV1 p24 antigen by surface plasmon resonance technique[J]. Biological Chemical Engineering, 7, 4-8(2021).

    [52] Omar N A S, Fen Y W, Abdullah J et al. Development of an optical sensor based on surface plasmon resonance phenomenon for diagnosis of dengue virus E-protein[J]. Sensing and Bio-Sensing Research, 20, 16-21(2018).

    [53] Omar N A S, Fen Y W, Abdullah J et al. Sensitive detection of dengue virus type 2 E-proteins signals using self-assembled monolayers/reduced graphene oxide-PAMAM dendrimer thin film-SPR optical sensor[J]. Scientific Reports, 10, 2374(2020).

    [54] Omar N A S, Fen Y W, Abdullah J et al. Quantitative and selective surface plasmon resonance response based on a reduced graphene oxide-polyamidoamine nanocomposite for detection of dengue virus E-proteins[J]. Nanomaterials, 10, 569(2020).

    [55] Qatamin A H, Ghithan J H, Moreno M et al. Detection of influenza virus by electrochemical surface plasmon resonance under potential modulation[J]. Applied Optics, 58, 2839-2844(2019).

    [56] Bruce-Staskal P J, Woods R M, Borisov O V et al. Hemagglutinin from multiple divergent influenza A and B viruses bind to a distinct branched, sialylated poly-LacNAc glycan by surface plasmon resonance[J]. Vaccine, 38, 6757-6765(2020).

    [57] Hong X G, Xu W D, Zhao C Q et al. Optimal design of surface plasmon resonance films structure[J]. Acta Optica Sinica, 30, 2164-2169(2010).

    [58] Murat N F, Mukhtar W M, Rashid A R A et al. Optimization of gold thin films thicknesses in enhancing SPR response[C], 244-247(2016).

    [59] Kim J, Oh S Y, Shukla S et al. Heteroassembled gold nanoparticles with sandwich-immunoassay LSPR chip format for rapid and sensitive detection of hepatitis B virus surface antigen (HBsAg)[J]. Biosensors and Bioelectronics, 107, 118-122(2018).

    [60] Heo N S, Oh S Y, Ryu M Y et al. Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus[J]. Biotechnology and Bioprocess Engineering, 24, 318-325(2019).

    [61] Lewis T, Giroux E, Jovic M et al. Localized surface plasmon resonance aptasensor for selective detection of SARS-CoV-2 S1 protein[J]. The Analyst, 146, 7207-7217(2021).

    [62] Lee T, Kim G H, Kim S M et al. Label-free localized surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection[J]. Colloids and Surfaces B: Biointerfaces, 182, 110341(2019).

    [63] Diltemiz S E, Ersöz A, Hür D et al. 4-Aminophenyl boronic acid modified gold platforms for influenza diagnosis[J]. Materials Science and Engineering: C, 33, 824-830(2013).

    [64] Zang F H, Su Z J, Zhou L C et al. Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays[J]. Advanced Materials, 31, e1902331(2019).

    [65] Takemura K, Adegoke O, Suzuki T et al. A localized surface plasmon resonance-amplified immunofluorescence biosensor for ultrasensitive and rapid detection of nonstructural protein 1 of Zika virus[J]. PLoS One, 14, e0211517(2019).

    [66] Bailey R E, Smith A M, Nie S M. Quantum dots in biology and medicine[J]. Physica E: Low-Dimensional Systems and Nanostructures, 25, 1-12(2004).

    [67] Mateu M G[M]. Structure and physics of viruses(2013).

    [68] Kim S A, Kim S J, Lee S H et al. Detection of avian influenza-DNA hybridization using wavelength-scanning surface plasmon resonance biosensor[J]. Journal of the Optical Society of Korea, 13, 392-397(2009).

    [69] Das S, Agarwal D K, Mandal B et al. Detection of the chilli leaf curl virus using an attenuated total reflection-mediated localized surface-plasmon-resonance-based optical platform[J]. ACS Omega, 6, 17413-17423(2021).

    [70] Moitra P, Alafeef M, Dighe K et al. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles[J]. ACS Nano, 14, 7617-7627(2020).

    [71] He P, Qiao W P, Liu L J et al. A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy[J]. Chemical Communications, 50, 10718-10721(2014).

    [72] He P, Liu L J, Qiao W P et al. Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement[J]. Chemical Communications, 50, 1481-1484(2014).

    [73] Chuang T L, Wei S C, Lee S Y et al. A polycarbonate based surface plasmon resonance sensing cartridge for high sensitivity HBV loop-mediated isothermal amplification[J]. Biosensors and Bioelectronics, 32, 89-95(2012).

    [74] Lugongolo M Y, Manoto S, Maphanga C et al. Label-free detection of mutations in the HIV genome using a surface plasmon resonance biosensor[J]. Proceedings of SPIE, 11661, 116610M(2021).

    [75] Liao J, Xu C J, Sun C Y et al. The diagnostic value of hTERC gene detection and HC2 and SPR technology in detecting HPV in cervical lesions[J]. Journal of Kunming Medical University, 41, 17-20(2020).

    [76] Miao Y B, Ren H X, Gan N et al. A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling[J]. Biosensors and Bioelectronics, 86, 477-483(2016).

    [77] Diao W, Tang M, Ding S J et al. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices[J]. Biosensors and Bioelectronics, 100, 228-234(2018).

    [78] Zhou C, Zou H M, Sun C J et al. Signal amplification strategies for DNA-based surface plasmon resonance biosensors[J]. Biosensors and Bioelectronics, 117, 678-689(2018).

    [79] Shi D C, Huang J F, Chuai Z R et al. Isothermal and rapid detection of pathogenic microorganisms using a nano-rolling circle amplification-surface plasmon resonance biosensor[J]. Biosensors and Bioelectronics, 62, 280-287(2014).

    [80] Li Y H, Yan Y R, Lei Y N et al. Surface plasmon resonance biosensor for label-free and highly sensitive detection of point mutation using polymerization extension reaction[J]. Colloids and Surfaces B: Biointerfaces, 120, 15-20(2014).

    [81] Knez K, Spasic D, Delport F et al. Real-time ligation chain reaction for DNA quantification and identification on the FO-SPR[J]. Biosensors and Bioelectronics, 67, 394-399(2015).

    [82] Lin Z N, Chen S J, Lin C Y. Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: a theoretical study[J]. Sensors, 20, 2445(2020).

    [83] Akib T B A, Mou S F, Rahman M M et al. Design and numerical analysis of a graphene-coated SPR biosensor for rapid detection of the novel coronavirus[J]. Sensors, 21, 3491(2021).

    [84] Liu L X, Ye K, Jia Z Y et al. High-sensitivity and versatile plasmonic biosensor based on grain boundaries in polycrystalline 1L WS2 films[J]. Biosensors and Bioelectronics, 194, 113596(2021).

    [85] Chowdhury A D, Takemura K, Khorish I M et al. The detection and identification of dengue virus serotypes with quantum dot and AuNP regulated localized surface plasmon resonance[J]. Nanoscale Advances, 2, 699-709(2020).

    [86] Adegoke O, Morita M, Kato T et al. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays[J]. Biosensors and Bioelectronics, 94, 513-522(2017).

    [87] Qiu G Y, Gai Z B, Tao Y L et al. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection[J]. ACS Nano, 14, 5268-5277(2020).

    [88] Qiu G Y, Gai Z B, Saleh L et al. Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2[J]. ACS Nano, 15, 7536-7546(2021).

    [89] Su L C, Chang C M, Tseng Y L et al. Rapid and highly sensitive method for influenza A (H1N1) virus detection[J]. Analytical Chemistry, 84, 3914-3920(2012).

    [90] Zeng C, Huang X, Xu J M et al. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor[J]. Analytical Biochemistry, 440, 18-22(2013).

    [91] Kim S W, Kim M G, Kim J et al. Detection of the mycovirus OMSV in the edible mushroom, pleurotus ostreatus, using an SPR biosensor chip[J]. Journal of Virological Methods, 148, 120-124(2008).

    [92] Yakes B J, Papafragkou E, Conrad S M et al. Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus[J]. International Journal of Food Microbiology, 162, 152-158(2013).

    [93] Wang S P, Shan X N, Patel U et al. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 16028-16032(2010).

    [94] Chang Y F, Wang W H, Hong Y W et al. Simple strategy for rapid and sensitive detection of avian influenza A H7N9 virus based on intensity-modulated SPR biosensor and new generated antibody[J]. Analytical Chemistry, 90, 1861-1869(2018).

    [95] Bai Y F, Feng F, Zhao L et al. Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin[J]. Biosensors and Bioelectronics, 47, 265-270(2013).

    [96] Szunerits S, Spadavecchia J, Boukherroub R. Surface plasmon resonance: signal amplification using colloidal gold nanoparticles for enhanced sensitivity[J]. Reviews in Analytical Chemistry, 33, 153-164(2014).

    [97] Das C M, Guo Y, Yang G et al. Gold nanorod assisted enhanced plasmonic detection scheme of COVID-19 SARS-CoV-2 spike protein[J]. Advanced Theory and Simulations, 3, 2000185(2020).

    [98] Huang L P, Ding L F, Zhou J et al. One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device[J]. Biosensors and Bioelectronics, 171, 112685(2021).

    [99] Altintas Z, Gittens M, Guerreiro A et al. Detection of waterborne viruses using high affinity molecularly imprinted polymers[J]. Analytical Chemistry, 87, 6801-6807(2015).

    [100] Malik A A, Nantasenamat C, Piacham T. Molecularly imprinted polymer for human viral pathogen detection[J]. Materials Science and Engineering: C, 77, 1341-1348(2017).

    [101] Cennamo N, D’Agostino G, Perri C et al. Proof of concept for a quick and highly sensitive on-site detection of SARS-CoV-2 by plasmonic optical fibers and molecularly imprinted polymers[J]. Sensors, 21, 1681(2021).

    [102] Jing J Y, Liu K, Jiang J F et al. Performance improvement approaches for optical fiber SPR sensors and their sensing applications[J]. Photonics Research, 10, 126-147(2022).

    [103] Ma J Y, Liu T G, Jiang J F et al. Progress in sensitivity enhancement for optical fibre surface plasmon resonance sensing[J]. Chinese Journal of Lasers, 48, 1906002(2021).

    [104] Ashiba H, Sugiyama Y, Wang X M et al. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels[J]. Biosensors and Bioelectronics, 93, 260-266(2017).

    [105] Chang Y F, Wang S F, Huang J C et al. Detection of swine-origin influenza A (H1N1) viruses using a localized surface plasmon coupled fluorescence fiber-optic biosensor[J]. Biosensors and Bioelectronics, 26, 1068-1073(2010).

    [106] Takemura K, Adegoke O, Takahashi N et al. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses[J]. Biosensors and Bioelectronics, 89, 998-1005(2017).

    [107] Nasrin F, Chowdhury A D, Takemura K et al. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots[J]. Biosensors and Bioelectronics, 122, 16-24(2018).

    [108] Nasrin F, Chowdhury A D, Takemura K et al. Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation[J]. Analytica Chimica Acta, 1109, 148-157(2020).

    [109] Chowdhury A D, Nasrin F, Gangopadhyay R et al. Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors[J]. Biosensors and Bioelectronics, 170, 112657(2020).

    [110] Riedel T, Rodriguez-Emmenegger C, de los Santos Pereira A et al. Diagnosis of Epstein-Barr virus infection in clinical serum samples by an SPR biosensor assay[J]. Biosensors and Bioelectronics, 55, 278-284(2014).

    [111] Riedel T, Surman F, Hageneder S et al. Hepatitis B plasmonic biosensor for the analysis of clinical serum samples[J]. Biosensors and Bioelectronics, 85, 272-279(2016).

    [112] Yoo H, Shin J, Sim J et al. Reusable surface plasmon resonance biosensor chip for the detection of H1N1 influenza virus[J]. Biosensors and Bioelectronics, 168, 112561(2020).

    [113] Goode J A, Rushworth J V H, Millner P A. Biosensor regeneration: a review of common techniques and outcomes[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 31, 6267-6276(2015).

    [114] Uzun L, Say R, Ünal S et al. Production of surface plasmon resonance based assay kit for hepatitis diagnosis[J]. Biosensors and Bioelectronics, 24, 2878-2884(2009).

    [115] Park T J, Lee S J, Kim D K et al. Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein[J]. Talanta, 89, 246-252(2012).

    [116] Jahanshahi P, Zalnezhad E, Sekaran S D et al. Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor[J]. Scientific Reports, 4, 3851(2014).

    [117] Im H, Sutherland J N, Maynard J A et al. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics[J]. Analytical Chemistry, 84, 1941-1947(2012).

    [118] Kumbhat S, Sharma K, Gehlot R et al. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection[J]. Journal of Pharmaceutical and Biomedical Analysis, 52, 255-259(2010).

    [119] Wong C L, Chua M, Mittman H et al. A phase-intensity surface plasmon resonance biosensor for avian influenza A (H5N1) detection[J]. Sensors, 17, 2363(2017).

    [120] Nilsson C E, Abbas S, Bennemo M et al. A novel assay for influenza virus quantification using surface plasmon resonance[J]. Vaccine, 28, 759-766(2010).

    [121] Wang X H, Li Y, Wang H F et al. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma[J]. Biosensors and Bioelectronics, 26, 404-410(2010).

    [122] Vidic J, Chevalier C, Le Goffic R et al. Surface plasmon resonance immunosensor for detection of PB1-F2 influenza A virus protein in infected biological samples[J]. Journal of Analytical & Bioanalytical Techniques, S7, 6(2013).

    [123] Florschütz K, Schröter A, Schmieder S et al. ‘Phytochip’:on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform[J]. Journal of Virological Methods, 189, 80-86(2013).

    [124] Loo J F C, Wang S S, Peng F et al. A non-PCR SPR platform using RNase H to detect microRNA 29a-3p from throat swabs of human subjects with influenza A virus H1N1 infection[J]. The Analyst, 140, 4566-4575(2015).

    [125] Gutiérrez-Aguirre I, Hodnik V, Glais L et al. Surface plasmon resonance for monitoring the interaction of Potato virus Y with monoclonal antibodies[J]. Analytical Biochemistry, 447, 74-81(2014).

    [126] Lesniewski A, Los M, Jonsson-Niedziółka M et al. Antibody modified gold nanoparticles for fast and selective, colorimetric T7 bacteriophage detection[J]. Bioconjugate Chemistry, 25, 644-648(2014).

    [127] Basso C R, Tozato C C, Crulhas B P et al. An easy way to detect dengue virus using nanoparticle-antibody conjugates[J]. Virology, 513, 85-90(2018).

    Houxiang Xu, Bin Xu, Jichuan Xiong, Xuefeng Liu. Research Progress of Surface Plasmon Resonance and Local Surface Plasmon Resonance in Virus Detection[J]. Chinese Journal of Lasers, 2022, 49(15): 1507401
    Download Citation