[1] Xiaomin CHEN, Dan XU, Ying WEI et al. Application of transition metal nano-heteromaterials in supercapacitors. Journal of Technology, 24, 266-275,315(2024).
[2] Chen LIU, Cong PAN, Peng WANG et al. Preparation of nitrogen-doped hollow carbon materials and their supercapacitor performance. Guangdong Chemical Industry, 51, 31-33(2024).
[3] L Q Mai, F Yang, Y L Zhao et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nature Communications, 2, 381(2011).
[4] Z B Wu, Y R Zhu, X B Ji. NiCo2O4-based materials for electrochemical supercapacitors. Journal of Materials Chemistry A, 2, 14759-14772(2014).
[5] H W Wang, Z A Hu, Y Q Chang et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. Journal of Materials Chemistry, 21, 10504(2011).
[6] Z W Xu, Z Li, X H Tan et al. Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared viasolvent-free microwave synthesis. RSC Advances, 2, 2753-2755(2012).
[7] D Guo, P Zhang, H M Zhang et al. NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. Journal of Materials Chemistry A, 1, 9024-9027(2013).
[8] D P Cai, D D Wang, B Liu et al. Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Applied Materials & Interfaces, 5, 12905-12910(2013).
[9] R Xu, J M Lin, J H Wu et al. A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers. Applied Surface Science, 463, 721-731(2019).
[10] Y Zhang, C R Chang, X D Jia et al. Morphology-dependent NiMoO4/carbon composites for high performance supercapacitors. Inorganic Chemistry Communications, 111, 107631(2020).
[11] J C Chen, M X Zhang, D J Shu et al. Electron beam irradiation-induced formation of defect-rich zeolites under ambient condition within minutes. Angewandte Chemie International Edition, 60, 14858-14863(2021).
[12] N Lavanya, A C Anithaa, C Sekar et al. Effect of gamma irradiation on structural,electrical and gas sensing properties of tungsten oxide nanoparticles. Journal of Alloys and Compounds, 693, 366-372(2017).
[13] E Samiei, S Mohammadi, M Torkzadeh-Mahani. Effect of gamma-irradiation on electrochemical properties of ZnCo2O4-rGO for supercapacitor application. Diamond and Related Materials, 127, 109157(2022).
[14] Y Tong, K Jin, H Bei et al. Local lattice distortion in NiCoCr,FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction. Materials & Design, 155, 1-7(2018).
[15] B Mendoza-Sánchez, T Brousse, C Ramirez-Castro et al. An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochimica Acta, 91, 253-260(2013).
[16] H Chen, L F Hu, M Chen et al. Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Advanced Functional Materials, 24, 934-942(2014).
[17] Y Y Lu, Z W Li, Z Y Bai et al. High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N Co-doped carbon cathode. Nano Energy, 66, 104132(2019).
[18] S Sahoo, R Kumar, E Joanni et al. Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 10, 13190-13240(2022).
[19] T Z Xu, Z W Li, D Wang et al. A fast proton-induced pseudocapacitive supercapacitor with high energy and power density. Advanced Functional Materials, 32, 2107720(2022).