• Chinese Optics Letters
  • Vol. 19, Issue 2, 022601 (2021)
Xiaoyan Pang1、*, Chen Feng1, and Xinying Zhao2、**
Author Affiliations
  • 1School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China
  • 2School of Physics & Information Technology, Shaanxi Normal University, Xi’an 710061, China
  • show less
    DOI: 10.3788/COL202119.022601 Cite this Article Set citation alerts
    Xiaoyan Pang, Chen Feng, Xinying Zhao. Evolution of spin density vectors in a strongly focused composite field[J]. Chinese Optics Letters, 2021, 19(2): 022601 Copy Citation Text show less
    References

    [1] K. Y. Bliokh, A. Y. Bekshaev, F. Nori. Extraordinary momentum and spin in evanescent waves. Nat. Commun., 5, 3300(2014).

    [2] T. Bauer, M. Neugebauer, G. Leuchs, P. Banzer. Optical polarization Möbius strips and points of purely transverse spin density. Phys. Rev. Lett., 117, 013601(2016).

    [3] C. Junge, D. O’Shea, J. Volz, A. Rauschenbeutel. Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 110, 213604(2013).

    [4] M. Neugebauer, T. Bauer, P. Banzer, G. Leuchs. Polarization tailored light driven directional optical nanobeacon. Nano Lett., 14, 2546(2014).

    [5] A. Aiello, N. Lindlein, C. Marquardt, G. Leuchs. Transverse angular momentum and geometric spin Hall effect of light. Phys. Rev. Lett., 103, 100401(2009).

    [6] J. Korger, A. Aiello, V. Chille, P. Banzer, C. Wittmann, N. Lindlein, C. Marquardt, G. Leuchs. Observation of the geometric spin Hall effect of light. Phys. Rev. Lett., 112, 113902(2014).

    [7] A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photon., 9, 789(2015).

    [8] A. Aiello, P. Banzer. The ubiquitous photonic wheel. J. Opt., 18, 085605(2016).

    [9] W. Miao, X. Pang, W. Liu. Photonic wheels and their topological reaction in a strongly focused amplitude tailored beam. IEEE Photon. J., 12, 6500709(2020).

    [10] X. Pang, W. Miao. Spinning spin density vectors along the propagation direction. Opt. Lett., 43, 4831(2018).

    [11] J. S. Eismann, P. Banzer, M. Neugebauer. Spin-orbit coupling affecting the evolution of transverse spin. Phys. Rev. Res., 1, 033143(2019).

    [12] J. Zhuang, L. Zhang, D. Deng. Tight-focusing properties of linearly polarized circular Airy Gaussian vortex beam. Opt. Lett., 45, 296(2020).

    [13] Z. Man, X. Dou, H. P. Urbach. The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams. Opt. Commun., 458, 124790(2020).

    [14] X. Pang, C. Feng, B. Nyamdorj, X. Zhao. Hidden singularities in 3D optical fields. J. Opt., 22, 115605(2020).

    [15] M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light(1999).

    [16] T. D. Visser, E. Wolf. The origin of the Gouy phase anomaly and its generalization to astigmatic wavefields. Opt. Commun., 283, 3371(2010).

    [17] M.-S. Kim, T. Scharf, C. Rockstuhl, H. P. Herzig. Phase anomalies in micro-optics. Prog. Opt., 58, 115(2013).

    [18] J. F. Federici, R. L. Wample, D. Rodriguez, S. Mukherjee. Application of terahertz Gouy phase shift from curved surfaces for estimation of crop yield. Appl. Opt., 48, 1382(2009).

    [19] X. Pang, D. G. Fischer, T. D. Visser. Wavefront spacing and Gouy phase in presence of primary spherical aberration. Opt. Lett., 39, 88(2014).

    [20] J. Zhang, X. Pang, J. Ding. Wavefront spacing and Gouy phase in strongly focused fields: the role of polarization. J. Opt. Soc. Am. A, 34, 1132(2017).

    [21] L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science, 292, 912(2001).

    [22] S. M. Baumann, D. M. Kalb, L. H. MacMillan, E. J. Galvez. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express, 17, 9818(2009).

    [23] A. Forbes. Controlling light’s helicity at the source: orbital angular momentum states from lasers. Phil. Trans. R. Soc. A., 375, 20150436(2017).

    [24] S. Wei, D. Wang, J. Lin, X. Yuan. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity. Opto-Electron Adv., 1, 180006(2018).

    [25] X. Yang, S. Wei, S. Kou, F. Yuan, E. Cheng. Misalignment measurement of optical vortex beam in free space. Chin. Opt. Lett., 17, 090604(2019).

    [26] T. Lin, A. Liu, X. Zhang, H. Li, L. Wang, H. Han, Z. Chen, X. Liu, H. Lü. Analyzing OAM mode purity in optical fibers with CNN-based deep learning. Chin. Opt. Lett., 17, 100603(2019).

    [27] X. Yan, L. Guo, M. Cheng, S. Chai. Free-space propagation of autofocusing Airy vortex beams with controllable intensity gradients. Chin. Opt. Lett., 17, 040101(2019).

    [28] G. Indebetouw. Optical vortices and their propagation. J. Mod. Opt., 40, 73(1993).

    [29] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A, 253, 358(1959).

    Xiaoyan Pang, Chen Feng, Xinying Zhao. Evolution of spin density vectors in a strongly focused composite field[J]. Chinese Optics Letters, 2021, 19(2): 022601
    Download Citation