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The evolution of the spin density vectors (SDVs) is studied in a strongly focused composite field. It is found that the SDVs can
be spiral along the propagation axis, and they are perpendicular to the ys direction on the ys axis. This behavior is governed
by the Gouy phase difference between the field polarization components. The 60° rotation of the spatial distribution of the
transverse SDVs is also generated, which is found to be controlled by the Gouy phase difference between the field orbital
angular momentum modes. Additionally, the spin density singularities are observed in the evolution of the SDVs.
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1. Introduction

Maybe the most typical quantity for characterizing three-
dimensional (3D) optical vector fields is the spin (angular
momentum) density vector (SDV), whose direction represents
the orientation of the polarization ellipse, and the scale indicates
the density of the spin angular momentum[1,2]. Since its impor-
tant role in 3D nano-optics, for instance, in controlling light–
matter interaction[3] and in the emission directivity of a
dipole-like nano-particle[4], the SDV has attracted much atten-
tion in recent years[5–14]. It has been found that transverse spin
density (SD) has a strong connection with the spin Hall effect of
light[5,6], and the purely transverse SDVs (tSDVs) lead to an
interesting optical phenomenon—the ‘photonic wheel’[7–9]; fur-
thermore, the spiral behavior of the SDVs provides a new rota-
tion freedom in optical tweezers[10–12]. The new features of
SDVs continue to be observed[13,14].
The Gouy phase is an additional phase that the focused field

acquires, compared to an ideal non-diffracted field[15–17], and it
plays a fundamental role in many applications, like in terahertz
spectroscopy[18] and optical calibration[19,20]. Because of the
polarization effect in strongly focused fields, there will be a
Gouy phase difference between the field components with dif-
ferent polarizations[20]. It has been found that this Gouy phase
difference leads to the rotation of the SDVs during beam propa-
gation[10–12]. The vortex beams with different orbital angular
momentum (OAM) modes (i.e., different topological charges)
have been studied substantially in past decades[21–27], and it
has been demonstrated that the (accumulated) Gouy phase

difference between the beams with different OAM modes can
induce the rotation of the field distributions[21,22]. Then, it will
be of interest to examine the behaviors of the SDVs in a field with
two distinguishing Gouy phase differences. Additionally, it is
shown that in 3D optical fields, new types of optical singularities
can exist: the SD singularities[14], and these new singularities also
have an effect on the behavior of the SDVs.
In this Letter, we compose a simple 3D field where two types

of Gouy phase differences (i.e., the difference between the field
polarization components and the difference between the field
OAM modes) exist. It will be shown that the evolution of
SDVs in such a 3D field is strongly dependent on these two
Gouy phase differences. Also, as it will be seen, in the evolution
of the SDVs, the SDV singularities can be observed, and their
effect on the SDVs will be discussed.

2. Strongly Focused Composite Field

Suppose that there are two vortex Gaussian beams with topo-
logical charges t1 =�1 and t2 = −2, and these two beams are
superimposed collinearly. Then, the complex amplitude of
the composite electric field at the beam waist w0 can be
expressed as[28]

E0�r,ϕ� = e−r
2=w2

0r�Aeiϕ � Be−i2ϕ�, (1)

where (r,ϕ) are polar coordinates in the transverse plane
(x = r cosϕ,y = r sinϕ), andA, B are measures of the amplitudes
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of the two beams. The intensity and the phase distribution of this
composite field are shown in Fig. 1, whereA = B. In Fig. 1(a), the
intensity is normalized to its maximum at the waist plane. It is
shown that the intensity of the composite field has three lobes,
and, when the difference between A and B is increased, these
lobes will be blurred. The white lines in Fig. 1(b) indicate the
phase singularities, and the phases across the white line have
a π phase jump.
Now, assume that this composite beam [Eq. (1)] is linearly

polarized in the x direction and is also incident upon a strongly
focused systemwith the entrance plane coincident with the waist
plane of the composite beam. The strongly focused system is
illustrated by Fig. 2, where the focal length is f , and a semi-
aperture angle is denoted by α. By applying the Richards–
Wolf vectorial diffraction theory[29], we can calculate the electric
field of the strongly focused composite field in the focal region at
point �ρs,ϕs,zs� as [note that the following equations can be cal-
culated by putting Eq. (1) as the incident field into Eq. (2) of
Ref. [20] or referring to the derivation of Eq. (2.26) in Ref. [29]]

E�ρs,ϕs,zs� = x̂ex � ŷey � ẑez , (2)

and

ex�ρs,ϕs,zs� = −ik
Z

α

0
P�θ,zs��Ix0 � Ix1 � Ix2 � Ix3 � Ix4�dθ,

(3)

ey�ρs,ϕs,zs� = −ik
Z

α

0
P�θ,zs��Iy0 � Iy1 � Iy3 � Iy4�dθ, (4)

ez�ρs,ϕs,zs� = −ik
Z

α

0
P�θ,zs��Iz0 � Iz1 � Iz2 � Iz3�dθ, (5)

where

P�θ,zs� =
����������
cos θ

p
�f sin θ�2e−�f sin θ�2=w2

0eikzs cos θ , (6)

and

Ix0�θ; ρs,ϕs� = −
1
4
B�1 − cos θ�J0�kρs sin θ�, (7)

Ix1�θ; ρs,ϕs� = i
1
2
A

�
�1� cos θ�eiϕs −

1
2
�1 − cos θ�e−iϕs

�

× J1�kρs sin θ�, (8)

Ix2�θ; ρs,ϕs� = −
1
2
B�1� cos θ�e−i2ϕs J2�kρs sin θ�, (9)

Ix3�θ; ρs,ϕs� = i
1
4
A�1 − cos θ�ei3ϕs J3�kρs sin θ�, (10)

Ix4�θ; ρs,ϕs� = −
1
4
B�1 − cos θ�e−i4ϕs J4�kρs sin θ�, (11)

Iy0�θ; ρs,ϕs� = i
1
4
B�1 − cos θ�J0�kρs sin θ�, (12)

Iy1�θ; ρs,ϕs� =
1
4
A�1 − cos θ�e−iϕs J1�kρs sin θ�, (13)

Iy3�θ; ρs,ϕs� =
1
4
A�1 − cos θ�ei3ϕs J3�kρs sin θ�, (14)

Iy4�θ; ρs,ϕs� = −i
1
4
B�1 − cos θ�e−i4ϕs J4�kρs sin θ�, (15)

Iz0�θ; ρs,ϕs� = −
1
2
A sin θJ0�kρs sin θ�, (16)

Iz1�θ; ρs,ϕs� = −i
1
2
B sin θe−iϕs J1�kρs sin θ�, (17)

Iz2�θ; ρs,ϕs� =
1
2
A sin θei2ϕs J2�kρs sin θ�, (18)

Iz3�θ; ρs,ϕs� = i
1
2
B sin θe−i3ϕs J3�kρs sin θ�, (19)

where k = 2π=λ is wave number, and Jn�x� is the nth-order Bessel
function of first kind. We can see that there are three field
(polarization) components with different expressions in the
focal region.

3. Evolution of SDVs

Before examining the behavior of the SDVs in this focused field,
we will first review some related concepts.

Fig. 1. Intensity and phase distribution of the incident field at the waist plane.
(a) Intensity, (b) phase. Here, A = B.

Fig. 2. Schematic illustration of a strongly focusing system. The origin O of the
coordinate system is taken at the geometrical focus.
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The Gouy phase is a physical quantity to measure the phase
difference between the actual field and the non-diffracted (ideal)
field in the same conditions[15], and, in a strongly focused field, a
Gouy phase δi of the field component ei can be written as

δi�ρs,ϕs,zs� = Arg�ei� − kR, i = x, y, z, (20)

where Arg means the phase of the field component, and R =����������������
ρ2s � z2s

p
is the distance of the point from the focus. For a laser

mode, the Gouy phase is usually used to represent the accumu-
lated phase difference of the whole beam, i.e., the ‘general’ Gouy
phase, and, in that case, the Gouy phase (δg) of a Laguerre–
Gaussian (LG) beam with topological charge t and radial mode
p is given by[21,22]

δg�zs� = �2p� jtj � 1� arctan �zs=zR�, (21)

where zR means the Rayleigh range. Generally speaking, the
Gouy phase δg reflects the extra phase that the beam acquires
after propagating through the focus, and, under the paraxial
approximation, δg in Eq. (21) and δi in Eq. (20) are essentially
the same. In order to avoid confusion, from here on, we call the
Gouy phase of the whole beam as the ‘general Gouy phase.’ If the
beam is singly ringed (p = 0), and the general Gouy phase is
cumulated from zs = −∞ to zs =�∞, the δg equals �jtj � 1�π.
The SDV, sE of the electric field, according to its definition

[1,2]

and Eq. (20), in the present 3D field can be expressed by the
Gouy phase difference δij = δi − δj (i, j = x, y, z)[2,9,10] as

sE =
ϵ0
4ω

Im�E� × E� =

0
BB@
s�x�E

s�y�E

s�z�E

1
CCA =

ϵ0
2ω

0
BB@
jeyjjezj sin δzy
jexjjezj sin δxz
jexjjeyj sin δyx

1
CCA, (22)

where ϵ0 denotes the permittivity of free space, and ω is the
angular frequency. Im and * represent the imaginary part and
the complex conjugate, respectively.
In the following, the evolution of SDVs in the focal region of

this strongly focused composite field is discussed. Note that in
this Letter only the case of A = B is considered.
First, the SDVs can spin along the propagation axis (i.e., zs

axis). From Eqs. (3)–(19), one can find that when ρs = 0,
the ex component and ey component only have a π=2 phase dif-
ference (δyx = −π=2), which means that the transverse compo-
nent of the electric field is circularly polarized. In this case, the
behavior of the SDVs is dependent on the Gouy phase difference
δxz , and, in the monotonic interval of δxz , the special structure,
‘spiral SDVs’ (i.e., the SDVs rotate around the central axis), will
be generated[10,12]. The curves of δxz with different values of
semi-aperture angle α are shown in Fig. 3. As one can see, the
monotonic intervals of δxz are formed in each plot, and the range
is increased with α, which is consistent with those observed in
Ref. [10]. While the difference from that in Ref. [10] is that in
Fig. 3(b), there exist two special points near zs = ±2.9λ, and
the δxz has a π phase jump at these two points. This

phenomenon is caused by the null SD at these two points, i.e., the
‘SDV singularity’[14]. Note that the SDV singularity describes a
point at which the SD is zero, the SDV is thus undefined, and the
topological structure around this singularity follows the same
rule as the traditional vector singularity of electric fields does.

Fig. 3. Gouy phase difference δxz on the propagation axis with different semi-
aperture angles. (a) α = 50°, (b) α = 55°, (c) α = 60°.

Fig. 4. SDVs on the propagation axis with different semi-aperture angles.
(a) α = 50°, (b) α = 55°, (c) α = 60°, (d) SDVs near a SDV singularity in (b).
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The corresponding SDVs on the zs axis are illustrated in Fig. 4,
where the blue arrows denote the SDVs and the red curve is their
envelope. We can see that in the monotonic intervals of δxz [for
instance �−7λ,� 7λ� in Fig. 4(b)], the SDVs rotate clockwise
along the propagation axis, and, as α increases, the rotation
range (corresponding to the monotonic interval in Fig. 3)
expands [i.e., this range in Fig. 4(c) is bigger than that in
Figs. 4(a) and 4(b)]. Especially, at the points with SDV singular-
ity in Fig. 4(b) (denoted by ‘V’), the SDVs do not exist, while by
passing through these points the SDVs reverse their directions.
This is depicted more clearly in Fig. 4(d), where the SDVs at
points zs = 2.8λ, 2.9λ have (nearly) opposite directions (note that
the exact position of this singular point is between 2.8λ
and 2.9λ).
Second, the SDVs exhibit special behaviors on the ys axis.

When ϕs = ±π=2, from Eqs. (3)–(19), we can obtain δzy=
±π=2, δxz = 0, ± π, and δyx = ±π=2, which means that here the
Gouy phase differences are constants (their signs change at the

points of phase singularity). This fact leads to s�x�E = ±C0jeyjjezj,
s�y�E = 0, s�z�E = ±C0jexjjeyj (here C0 = ϵ0=2ω). Therefore, along
this axis all of the SDVs are exactly perpendicular to the ys direc-
tion, and the SDV singularities can be observed easily. The Gouy
phase differences δzy and δyx are shown in Fig. 5. One can see
firstly that the values of δzy and δyx are very different on the�ys
axis and the −ys axis, i.e., asymmetric with respect to the origin
O. Second, δzy (or δyx) has a π jump at the phase singularities of
the ey or ez component (or the ex or ey component). Also, δzy and
δyx have their common ‘jump’ points, which can be seen along
the dotted (vertical) lines in Fig. 5. At these common ‘jump’
points [denoted by ‘Vi’ (i = 1, 2, : : : , 6)], the SDV singularities
are formed, which also can be observed in Fig. 6.
In Fig. 6, the SDVs with the same parameter as Fig. 5 are dis-

played [note that here the plots (a) and (b) are the same figure
but seen from different views]. One can see firstly that all the
SDVs are perpendicular to the ys axis. Second, there are six ‘vec-
tor singularities’ from ys = −2.6λ to ys =�2.6λ, and the SDVs
have opposite directions at the two sides of each ‘vector singu-
larity.’ Furthermore, the SDVs have quite different distributions
on the two half-axes. This asymmetry is mainly caused by the

rotation of the spatial distribution of the SDVs, which will be
discussed in the following part.
Third, the spatial distribution of the tSDVs rotates during

beam propagation. The tSDVs, s�t�E = �s�x�E ,s�y�E �, in the focal plane
are shown in Fig. 7(a), where the arrows denote the tSDVs with
their size and color indicating the density of the tSDVs (i.e., the
transverse SD). The color-coded transverse SD of the same
region is also shown in Fig. 7(b). We can see that there are
six strong density spots, and they are distributed symmetrically
with respect to the ys axis. The tSDVs on the transverse planes at
different propagation distances are displayed in Fig. 8, from
which one see that the spatial distribution of the tSDVs rotates
clockwise as the beam propagates. To illustrate this rotation
exactly, we selected two maxima density points denoted by a
black circle and a black square, respectively (see Fig. 8), and their
azimuthal angles at different transverse planes are plotted
in Fig. 9.
From Fig. 9, we can find that the point denoted by the circle

rotates from about 170° to 110°, and the other one circles from
around 70° to 10°. Both total rotation angles are about 60°. This
rotation can be explained by the difference of the general Gouy

Fig. 5. Gouy phase differences δzy and δyx on the ys axis: α = 60°.

Fig. 6. SDVs on the ys axis. (a) and (b) are the same figure from different
views: α = 60°.

Fig. 7. (a) tSDVs and (b) transverse SDs on the focal plane.
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phases between two beams with different OAMmodes. The inci-
dent field is composed by two beams with t1 =�1 and t2 = −2.
As we discussed before, here, the general Gouy phases of these
beams can be calculated from Eq. (21), and they are 2π and 3π.
Due to this general Gouy phase difference, with the beam propa-
gation, the composite field will acquire an angular change on the

field distribution, and this change is π�jt2j−jt1j�
t2−t1

= −π=3[22] (note
that the value −π=3 is calculated for the beam propagating from
−∞ to �∞). Therefore, the spatial distribution of the tSDVs
gets an about 60° clockwise rotation.

4. Conclusions

In conclusion, the evolution of the SDVs of a strongly focused
composite field is studied. It is found that in such a field, the

SDVs of the points on the zs axis can rotate with the beam propa-
gation, while the SDVs for the points on the ys axis are all
perpendicular to the ys direction. These two phenomena can
be explained by the Gouy phase difference between the field
polarization components (i.e., the components with different
polarization states). Particularly, the SDV singularities are also
observed on these two axes, and the SDVs will reverse their
directions by passing through these singularities. The spatial dis-
tribution of the tSDVs (the transverse component of SDVs) is
examined, and it is found that the tSDVs’ distribution will have
a 60° rotation during the beam propagation. It is quite interest-
ing to see that this 60° rotation is caused by the general Gouy
phase difference between the field OAMmodes (i.e., the compo-
nents with different OAM modes) rather than the field polari-
zation components. The findings in this Letter may have
applications in optical manipulations; on the other hand, this
work also supplies a simple model for observing rich behaviors
of SDVs and for distinguishing two types of Gouy phases.
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