• Chinese Journal of Quantum Electronics
  • Vol. 31, Issue 4, 385 (2014)
Yong-liang ZHANG1、*, Xian-zi DONG1, Xuan-ming DUAN2, and Zhen-sheng ZHAO1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2014.04.001 Cite this Article
    ZHANG Yong-liang, DONG Xian-zi, DUAN Xuan-ming, ZHAO Zhen-sheng. Fundamental and frontiers of transformation optics[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 385 Copy Citation Text show less
    References

    [1] Leonhardt U, Philbin T G. Transformation optics and the geometry of light [J]. Prog. Opt., 2009, 53: 69-152.

    [2] Chen H Y, Chan C T, Shen P. Transformation optics and metamaterials [J]. Nat. Mat., 2013, 9: 387-396.

    [3] Pendry J, Schurig D, Smith D. Controlling electromagnetic fields [J]. Science, 2006, 312: 1780-1782.

    [4] Leonhardt U. Optical conformal mapping [J]. Science, 2006, 312: 1777-1780.

    [5] Mandelshtam L I. Complete Collection of Works [M]. Moscow: Academy of Science, 1950.

    [6] Skrotski G V. The influence of gravitation on the propagation of light [J]. Soviet Phys. Dokl., 1957, 2: 226-229.

    [7] Plebanski J. Electromagnetic waves in gravitational fields [J]. Phys. Rev., 1960, 118(5): 1396-1408.

    [8] Landau L D, Lifshitz E M. The Classical Theory of Field [M]. Oxford: Butterworth-Heinemann, 1995.

    [9] Post E G. Formal Structure of Electromagnetics: General Covariance and Electromagnetics [M]. New York: Interscience Publish, 1962.

    [10] Lax M, Nelson D F. Maxwell equations in material form [J]. Phys. Rev. B, 1976, 13(4): 1777-1784.

    [11] Schurig D, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314:977-980.

    [12] Kant B, Germain D, et al. Experimental demonstration of a nonmagnetic cloak at microwave frequencies [J]. Phys. Rev. B, 2009, 80: 201104(R).

    [13] Li J, Pendry J. Hiding under a carpet: A new strategy for cloaking [J]. Phys. Rev. Lett., 2008, 101: 203901.

    [14] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics [J]. Nat. Mater., 2009, 8: 568-571.

    [15] Gabrielli L, Cardenas J, Poitras C, et al. Silicon nanostructure cloak operating at optical frequencies [J]. Nat. Photon., 2009, 3: 461-463.

    [16] Zhou F, BaoY, Cao W, et al. Hiding a realistic object using a broadband terehertz invisible cloak [J]. Sci. Rep., 2011, 1: 78.

    [17] Liu R, et al. Broadband ground-plane cloak [J]. Science, 2009, 323: 366-369.

    [18] Ma H F, Cui T J. Three-dimensional broadband ground-plane made of metamaterials [J]. Nat. Commun., 2010, 1: 21.

    [19] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths [J]. Science, 2010, 328: 337-339.

    [20] Luo Y, et al. A rigorous analysis of plane transformed invisibility cloak [J]. IEE Trans. Antenn. Propag., 2009, 57: 3926-3933.

    [21] Zhang B, Luo Y, Liu X, et al. Macroscopic invisibility cloak for visible light [J]. Phys. Rev. Lett., 2011, 106: 033901.

    [22] Chen X, Luo Y, Zhang J, et al. Macroscopic invisibility of visible light [J]. Nat. Commun., 2011, 2: 176.

    [23] Liang D, Gu J Q, et al. Robust large dimension terahertz cloaking [J]. Adv. Mat., 2012, 24: 916-921.

    [24] Chen H, Zheng B. Broadband polygonal invisibility cloak for visible light [J]. Sci. Rep., 2012, 2: 255.

    [25] Chen H, Zheng B, et al. Ray optics cloaking devices for large objects in incoherent natural light [J]. Nat. Commun., 2013, 4: 2652.

    [26] Fan Y, Mei Z L, Jin T Y, et al. dc electric invisibility cloak [J]. Phys. Rev. Lett., 2012, 109: 053902.

    [27] Ma Q, Mei Z L, Zhu S K, et al. Experiments on active cloaking and illusion for Laplace equation [J]. Phys. Rev. Lett., 2013, 111: 173901.

    [28] Lai Y, Jack Ng, Chen H Y, et al. Illusion optics: The optical transformation of an object into another object [J]. Phys. Rev. Lett., 2009, 102: 253902.

    [29] Liu M, Mei Z L, Ma X, et al. dc illusion and its experimental verification [J]. Appl. Phys. Lett., 2012, 101: 051905.

    [30] Yang T, Chen H Y, Luo X D, et al. Superscatter: Enhancement of scattering with complementary media [J]. Opt. Expr., 2008, 16: 18545.

    [31] Jack Ng, Chen H Y, Chan C T. Metamaterial frequency-selective superabsorber [J]. Opt. Lett., 2009, 34: 644.

    [32] Li C, Meng X, Liu X, et al. Experimental realization of a circuit based broadband illusion optics analogue [J]. Phys. Rev. Lett., 2010, 105: 233906.

    [33] Huidobro P A, Nesterov M L, Martin-Moreno L, et al. Transformation optics for plasmonics [J]. Nano Lett., 2010, 10: 1985-1990.

    [34] Liu Y M, Zentagraf T, Bartal G, et al. Tranformation plasmon optics [J]. Nano Lett., 2010, 10: 1991-1997.

    [35] Pendry J, Aubry A, Smith D R, et al. Transformation optics and subwavelength control of light [J]. Science, 2012, 337: 549-552.

    [36] Luo Y, Zhao R, Fernandez-Dominguez A I, et al. Harvesting light with transformation optics [J]. Sci. China: Inform. Sci., 2013, 56: 120401.

    [37] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens [J]. Nat. Mat., 2009, 9: 129-132.

    [38] Ma H F, Cui T J. Three-dimensional broadband and broad-angle transformation-optics lens [J]. Nat. Commun., 2010, 1: 124.

    [39] Di Falco A, Kehr S C, LeonhardtU. Luneburg lens in silicon photonics [J]. Opt. Expr., 2011, 19(6): 5156-5162.

    [40] Hunt J, et al. Planar, flattened Luneburg lens at infrared wavelengths [J]. Opt. Expr., 2012, 20(2): 1706-1713.

    [41] Vakil A, Engheta N. Transformation optics using graphene [J]. Science, 2011, 332(6035): 1291-1294.

    [42] Genov D A, Zhang S, Zhang X. Mimicking celestial mechanics in metamaterials [J]. Nat. Phys., 2009, 5: 687-692.

    [43] Cheng Q, Cui T J, Jiang W X, et al. An omnidirectional electromagnetic absorber made of metamaterials [J]. New J. Phys., 2010, 12: 063006.

    [44] Zentgraf Z, Valentine J, Tapia N, et al. An optical Janus device for integrated photonics [J]. Adv. Mat., 2010, 22: 2561.

    [45] Roberts D A, Rahm M, Pendry J, et al. Transformation optical design of sharp waveguide bends and corners [J]. Appl. Phys. Lett., 2008, 93: 251111.

    [46] Zhang Y L, Shi L N, Dong X Z, et al. Topological effects in transformation optics [J]. 2013, arXiv: 1301.6954.

    [47] Milton G W, Briane M, Willis J R. On cloaking for elasticity and physical equations with a transformation invariant form [J]. New J. Phys., 2006, 8: 248.

    [48] Zhang S, Genov D A, Sun C, et al. Cloaking of matter waves [J]. Phys. Rev. Lett., 2008, 100: 123002.

    [49] Guenneau S, Amra C, Veynante D. Transformation thermodynamics: Cloaking and concentrating heat flux [J]. Opt. Expr., 2012, 20: 8207-8218.

    [50] Tretyakov S A. Nefedov I S, Alitalo P. Generalized field-transforming metamaterials [J]. New J. Phys., 2008, 10: 115028.

    [51] Liu F, Liang Z X, Li J. Manipulating polarization and impedance signature: A reciprocal field transformation approach [J]. Phys. Rev. Lett., 2013, 111: 033901.

    [52] Castaldi G, Galdi V, Alu A, et al. Nonlocal transformation optics [J]. Phys. Rev. Lett., 2012, 108: 063902.

    [53] Castaldi G, Galdi V, Alu A, et al. PT metamaterials via complex coordinate transformation [J]. Phys. Rev. Lett., 2013, 110: 173901.

    [54] Wu K, Wang G P. Hiding objects and creating illusions above a carpet filter using a Fourier optics approach [J]. Opt. Expr., 2010, 18(19): 19894-19901.

    ZHANG Yong-liang, DONG Xian-zi, DUAN Xuan-ming, ZHAO Zhen-sheng. Fundamental and frontiers of transformation optics[J]. Chinese Journal of Quantum Electronics, 2014, 31(4): 385
    Download Citation