• Photonics Research
  • Vol. 8, Issue 9, 1541 (2020)
Xiaolun Xu1, Aurélie Broussier1, Tiziana Ritacco1, Mackrine Nahra1, Fabien Geoffray2, Ali Issa1, Safi Jradi1, Renaud Bachelot1、3、4, Christophe Couteau1、5、*, and Sylvain Blaize1、6、*
Author Affiliations
  • 1Light, nanomaterials, nanotechnologies (L2n), ERL 7004, CNRS. University of Technology of Troyes, 12 rue Marie Curie, 10004 Troyes Cedex, France
  • 2Teem Photonics, 61 Chemin du Vieux Chêne, 38246 Meylan, France
  • 3Key Laboratory of Advanced Display and System Application, Ministry of Education, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
  • 4Sino-European School of Technology, Shanghai University, Shanghai 200044, China
  • 5e-mail: christophe.couteau@utt.fr
  • 6e-mail: sylvain.blaize@utt.fr
  • show less
    DOI: 10.1364/PRJ.392706 Cite this Article Set citation alerts
    Xiaolun Xu, Aurélie Broussier, Tiziana Ritacco, Mackrine Nahra, Fabien Geoffray, Ali Issa, Safi Jradi, Renaud Bachelot, Christophe Couteau, Sylvain Blaize. Towards the integration of nanoemitters by direct laser writing on optical glass waveguides[J]. Photonics Research, 2020, 8(9): 1541 Copy Citation Text show less
    References

    [1] C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, S. Höfling. GaAs integrated quantum photonics: towards compact and multi‐functional quantum photonic integrated circuits. Laser Photon. Rev., 10, 870-894(2016).

    [2] S. L. Portalupi, G. Hornecker, V. Giesz, T. Grange, A. Lemaître, J. Demory, I. Sagnes, N. D. Lanzillotti-Kimura, L. Lanco, A. Auffèves. Bright phonon-tuned single-photon source. Nano Lett., 15, 6290-6294(2015).

    [3] P. Senellart, G. Solomon, A. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026-1039(2017).

    [4] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics, 4, 174-177(2010).

    [5] L. Sapienza, M. Davanço, A. Badolato, K. Srinivasan. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission. Nat. Commun., 6, 7833(2015).

    [6] M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett., 89, 233602(2002).

    [7] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett., 95, 013904(2005).

    [8] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [9] A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science, 329, 930-933(2010).

    [10] P. Schnauber, A. Singh, J. Schall, S. I. Park, J. D. Song, S. Rodt, K. Srinivasan, S. Reitzenstein, M. Davanco. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits(2019).

    [11] W. Xie, R. Gomes, T. Aubert, S. Bisschop, Y. Zhu, Z. Hens, E. Brainis, D. Van Thourhout. Nanoscale and single-dot patterning of colloidal quantum dots. Nano Lett., 15, 7481-7487(2015).

    [12] C. H. Woo, P. M. Beaujuge, T. W. Holcombe, O. P. Lee, J. M. J. Fréchet. Incorporation of furan into low band-gap polymers for efficient solar cells. J. Am. Chem. Soc., 132, 15547-15549(2010).

    [13] Y. Cui, M. T. Björk, J. A. Liddle, C. Sönnichsen, B. Boussert, A. P. Alivisatos. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett., 4, 1093-1098(2004).

    [14] K. Santhosh, O. Bitton, L. Chuntonov, G. Haran. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [15] L. Jauffred, A. C. Richardson, L. B. Oddershede. Three-dimensional optical control of individual quantum dots. Nano Lett., 8, 3376-3380(2008).

    [16] R. A. Jensen, I.-C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, M. G. Bawendi. Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures. ACS Photon., 3, 423-427(2016).

    [17] I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, V. Zwiller. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett., 16, 2289-2294(2016).

    [18] J.-H. Kim, S. Aghaeimeibodi, C. J. K. Richardson, R. P. Leavitt, D. Englund, E. Waks. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett., 17, 7394-7400(2017).

    [19] S. J. P. Kress, P. Richner, S. V. Jayanti, P. Galliker, D. K. Kim, D. Poulikakos, D. J. Norris. Near-field light design with colloidal quantum dots for photonics and plasmonics. Nano Lett., 14, 5827-5833(2014).

    [20] H. Siampour, S. Kumar, S. I. Bozhevolnyi. Nanofabrication of plasmonic circuits containing single photon sources. ACS Photon., 4, 1879-1884(2017).

    [21] H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, S. Kawata. Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl. Phys. Lett., 83, 1104-1106(2003).

    [22] G. Von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener. Three‐dimensional nanostructures for photonics. Adv. Funct. Mater., 20, 1038-1052(2010).

    [23] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398, 51-54(1999).

    [24] M. Farsari, B. N. Chichkov. Materials processing: two-photon fabrication. Nat. Photonics, 3, 450-452(2009).

    [25] S. Maruo, O. Nakamura, S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22, 132-134(1997).

    [26] M. J. Smith, C. H. Lin, S. Yu, V. V. Tsukruk. Composite structures with emissive quantum dots for light enhancement. Adv. Opt. Mater., 7, 1801072(2019).

    [27] J.-J. Park, P. Prabhakaran, K. K. Jang, Y. Lee, J. Lee, K. Lee, J. Hur, J.-M. Kim, N. Cho, Y. Son. Photopatternable quantum dots forming quasi-ordered arrays. Nano Lett., 10, 2310-2317(2010).

    [28] R. Krini, C. W. Ha, P. Prabhakaran, H. El Mard, D. Yang, R. Zentel, K. Lee. Photosensitive functionalized surface‐modified quantum dots for polymeric structures via two‐photon‐initiated polymerization technique. Macromol. Rapid Commun., 36, 1108-1114(2015).

    [29] S.-K. Park, X. Teng, J. Jung, P. Prabhakaran, C. W. Ha, K.-S. Lee. Photopatternable cadmium-free quantum dots with ene-functionalization. Opt. Mater. Express, 7, 2440-2449(2017).

    [30] T. H. Au, S. Buil, X. Quélin, J.-P. Hermier, N. D. Lai. Photostability and long-term preservation of a colloidal semiconductor-based single photon emitter in polymeric photonic structures. Nanoscale Adv., 1, 3225-3231(2019).

    [31] Q. Shi, B. Sontheimer, N. Nikolay, A. W. Schell, J. Fischer, A. Naber, O. Benson, M. Wegener. Wiring up pre-characterized single-photon emitters by laser lithography. Sci. Rep., 6, 31135(2016).

    [32] A. Tervonen, S. K. Honkanen, B. R. West. Ion-exchanged glass waveguide technology: a review. Opt. Eng., 50, 071107(2011).

    [33] Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, X. Q. Dinh, X. W. Sun, T. Xu, R. Bachelot. 3D photoluminescent nanostructures containing quantum dots fabricated by two‐photon polymerization: influence of quantum dots on the spatial resolution of laser writing. Adv. Mater. Technol., 4, 1800522(2019).

    [34] K. Obata, A. El-Tamer, L. Koch, U. Hinze, B. N. Chichkov. High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light Sci. Appl., 2, e116(2013).

    [35] T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, M. Wegener. Tailored 3D mechanical metamaterials made by dip‐in direct‐laser‐writing optical lithography. Adv. Mater., 24, 2710-2714(2012).

    [36] X. Zhou, Y. Hou, J. Lin. A review on the processing accuracy of two-photon polymerization. AIP Adv., 5, 030701(2015).

    [37] H.-B. Sun, M. Maeda, K. Takada, J. W. M. Chon, M. Gu, S. Kawata. Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Appl. Phys. Lett., 83, 819-821(2003).

    [38] H.-B. Sun, S. Kawata. Two-photon photopolymerization and 3D lithographic microfabrication. NMR • 3D Analysis • Photopolymerization, 169-273(2004).

    [39] F. Aloui, L. Lecamp, P. Lebaudy, F. Burel. Refractive index evolution of various commercial acrylic resins during photopolymerization. Express Polym. Lett., 12, 966-971(2018).

    [40] M. Schmid, D. Ludescher, H. Giessen. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Opt. Mater. Express, 9, 4564-4577(2019).

    [41] M. Elie, R. D. Costa, S. Gaillard, J. L. Renaud. Light-Emitting Electrochemical Cells: Concepts, Advances and Challenges(2017).

    [42] O. V. Yaroshchuk, L. O. Dolgov. Electro-optics and structure of polymer dispersed liquid crystals doped with nanoparticles of inorganic materials. Opt. Mater., 29, 1097-1102(2007).

    [43] V. Mirkhani, F. Tong, D. Song, Y. Chung, B. Ozden, K. Yapabandara, M. Hamilton, D.-J. Kim, H. Koo, K. K. Lee. Simulation of the refractive index of Ga doped ZnO nanoparticles embedded in PEDOT: PSS using effective medium approximations. J. Nanosci. Nanotechnol., 16, 7358-7362(2016).

    [44] M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, K. Srinivasan. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun., 8, 889(2017).

    [45] B. Chen, H. Wu, C. Xin, D. Dai, L. Tong. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun., 8, 20(2017).

    [46] V. S. C. M. Rao, S. Hughes. Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient “on chip” single photon gun. Phys. Rev. Lett., 99, 193901(2007).

    [47] E. Jordan, F. Geoffray, A. Bouchard, E. Ghibaudo, J.-E. Broquin. Development of Tl+/Na+ ion-exchanged single-mode waveguides on silicate glass for visible-blue wavelengths applications. Ceram. Int., 41, 7996-8001(2015).

    [48] J. S. Varsanik, J. J. Bernstein. Integrated optic/nanofluidic fluorescent detection device with plasmonic excitation. J. Micromech. Microeng., 23, 095017(2013).

    [49] A. W. Snyder, J. Love. Optical Waveguide Theory(2012).

    [50] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933-937(1996).

    [51] J. Cui, A. P. Beyler, I. Coropceanu, L. Cleary, T. R. Avila, Y. Chen, J. M. Cordero, S. L. Heathcote, D. K. Harris, O. Chen. Evolution of the single-nanocrystal photoluminescence linewidth with size and shell: implications for exciton-phonon coupling and the optimization of spectral linewidths. Nano Lett., 16, 289-296(2015).

    [52] W. van der Stam, M. de Graaf, S. Gudjonsdottir, J. J. Geuchies, J. J. Dijkema, N. Kirkwood, W. H. Evers, A. Longo, A. J. Houtepen. Tuning and probing the distribution of Cu+ and Cu2+ trap states responsible for broad-band photoluminescence in CuInS2 nanocrystals. ACS Nano, 12, 11244-11253(2018).

    [53] P. J. Whitham, A. Marchioro, K. E. Knowles, T. B. Kilburn, P. J. Reid, D. R. Gamelin. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J. Phys. Chem. C, 120, 17136-17142(2016).

    [54] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulovic. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett., 9, 2532-2536(2009).

    [55] S. Jun, E. Jang, J. Park, J. Kim. Photopatterned semiconductor nanocrystals and their electroluminescence from hybrid light-emitting devices. Langmuir, 22, 2407-2410(2006).

    [56] K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, Y. Arakawa. Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nat. Photonics, 2, 688-692(2008).

    [57] P. Prabhakaran, W. J. Kim, K.-S. Lee, P. N. Prasad. Quantum dots (QDs) for photonic applications. Opt. Mater. Express, 2, 578-593(2012).

    [58] J. B. Madrigal, R. Tellez-Limon, F. Gardillou, D. Barbier, W. Geng, C. Couteau, R. Salas-Montiel, S. Blaize. Hybrid integrated optical waveguides in glass for enhanced visible photoluminescence of nanoemitters. Appl. Opt., 55, 10263-10268(2016).

    [59] A. J. Fischer, P. D. Anderson, D. D. Koleske, G. Subramania. Deterministic placement of quantum-size controlled quantum dots for seamless top-down integration. ACS Photon., 4, 2165-2170(2017).

    Xiaolun Xu, Aurélie Broussier, Tiziana Ritacco, Mackrine Nahra, Fabien Geoffray, Ali Issa, Safi Jradi, Renaud Bachelot, Christophe Couteau, Sylvain Blaize. Towards the integration of nanoemitters by direct laser writing on optical glass waveguides[J]. Photonics Research, 2020, 8(9): 1541
    Download Citation