• Laser & Optoelectronics Progress
  • Vol. 59, Issue 13, 1316001 (2022)
Jihong Li*, Longyu Lei, Mingke Du, Yunlong Zhang, Min Zhang, Jie Shi, and Jun Gao
Author Affiliations
  • School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi , China
  • show less
    DOI: 10.3788/LOP202259.1316001 Cite this Article Set citation alerts
    Jihong Li, Longyu Lei, Mingke Du, Yunlong Zhang, Min Zhang, Jie Shi, Jun Gao. Structure and Properties of T2 Copper/304 Stainless Steel Laser Welded Joint[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1316001 Copy Citation Text show less
    Schematic diagram of laser welding
    Fig. 1. Schematic diagram of laser welding
    Macro morphology of welded joints under different beam offsets. (a) 0 mm; (b) 0.2 mm;(c)0.4 mm;(d)-0.2 mm;(e)-0.4 mm
    Fig. 2. Macro morphology of welded joints under different beam offsets. (a) 0 mm; (b) 0.2 mm;(c)0.4 mm;(d)-0.2 mm;(e)-0.4 mm
    Schematic diagrams of formation mechanism of weld morphology. (a) Metal evaporation force; (b) Marangoni convection
    Fig. 3. Schematic diagrams of formation mechanism of weld morphology. (a) Metal evaporation force; (b) Marangoni convection
    Microstructure of the copper fusion zone under different beam offsets. (a) 0 mm; (b) 0.2 mm;(c)0.4 mm;(d)-0.2 mm;(e)-0.4 mm
    Fig. 4. Microstructure of the copper fusion zone under different beam offsets. (a) 0 mm; (b) 0.2 mm;(c)0.4 mm;(d)-0.2 mm;(e)-0.4 mm
    Microstructure of the weld center under different beam offsets. (a) 0 mm; (b) 0.2 mm; (c) 0.4 mm; (d) -0.2 mm; (e) -0.4 mm
    Fig. 5. Microstructure of the weld center under different beam offsets. (a) 0 mm; (b) 0.2 mm; (c) 0.4 mm; (d) -0.2 mm; (e) -0.4 mm
    Tensile test results of welded joints. (a) Stress-strain curve; (b) stress-elongation histogram
    Fig. 6. Tensile test results of welded joints. (a) Stress-strain curve; (b) stress-elongation histogram
    Fracture morphology of welded joints under different beam offsets. (a) 0 mm; (b) 0.2 mm; (c) 0.4 mm; (d) -0.2 mm; (e) -0.4 mm
    Fig. 7. Fracture morphology of welded joints under different beam offsets. (a) 0 mm; (b) 0.2 mm; (c) 0.4 mm; (d) -0.2 mm; (e) -0.4 mm
    Results of microhardness test
    Fig. 8. Results of microhardness test
    Distribution of microhardness
    Fig. 9. Distribution of microhardness
    MaterialMass fraction /%
    CuCCrNiMnFeSi
    T2-Y≥99.95----≤0.005-
    SUS304-≤0.0818-208.0-10.5≤2.00Bal.≤1.00
    Table 1. Chemical composition of T2-Y and SUS304
    MaterialTensile strength /MPaYield strength /MPaHardness /HV0.1
    T2-Y215‒27560‒7060‒90
    SUS304≥520205210
    Table 2. Mechanical properties of T2-Y and SUS304
    Sample No.Laser power P /kWWelding speed v /(mm·min-1Beam offset /mmDefocus /mmGas flow /(L·min-1
    1#3.710000-225
    2#0.20
    3#0.40
    4#-0.20
    5#-0.40
    Table 3. Laser welding parameters
    Detection locationMass fraction /%Phase composition
    FeCuCrNi
    A56.0016.0021.006.00γ-Fe
    B4.9093.801.30-Cu
    C67.399.7016.086.83Fe
    D56.7523.7713.715.77α-Fe
    E10.0085.292.182.53Cu
    F60.6115.8917.535.89Fe
    G51.7030.8911.545.86Fe
    H8.0086.893.581.53Cu
    Table 4. EDS test results of weld
    Detection locationMass fraction /%Phase composition
    FeCuO
    I5.0366.8228.15Cu2O
    J13.5857.5528.87Cu2O
    K5.7968.5725.64Cu2O
    L11.4958.2830.23Cu2O
    Table 5. EDS test results of stretch fracture
    Jihong Li, Longyu Lei, Mingke Du, Yunlong Zhang, Min Zhang, Jie Shi, Jun Gao. Structure and Properties of T2 Copper/304 Stainless Steel Laser Welded Joint[J]. Laser & Optoelectronics Progress, 2022, 59(13): 1316001
    Download Citation