• Infrared and Laser Engineering
  • Vol. 45, Issue 11, 1106008 (2016)
Wang Hongjian1、2、*, Yang Qingguo2, Ye Yan2, Peng Qixian2, Su Jingqin3, and Li Zeren2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201645.1106008 Cite this Article
    Wang Hongjian, Yang Qingguo, Ye Yan, Peng Qixian, Su Jingqin, Li Zeren. Multi-keV X-ray conversion efficiencies of laser-irradiated nano-velvet Cu targets[J]. Infrared and Laser Engineering, 2016, 45(11): 1106008 Copy Citation Text show less
    References

    [1] Luther-Davies B, Perry A, Nugent K A. K Alpha emission measurements and superthermal electron transport in layered laser-irradiated disk targets[J]. Physical Review A, 1987, 35(10): 4306-4313.

    [2] Widmann K, Beiersdorfer P, Brown G V, et al. A high-resolution transmission-type X-ray spectrometer designed for observation of the Kalpha transitions of highly charged high-Z ions[J]. Review of Scientific Instruments, 1997, 68(1): 1087-1090.

    [3] Okano Yasuaki, Hironaka Yoichiro, Nakamura Kazutaka G, et al. Energy distribution of electrons ejected from a copper target in a femtosecond laser field of 1017 W/cm2[J]. Journal of Applied Physics, 2004, 95(5): 2278-2282.

    [4] Wharton K B, Hatchett S P, Wilks S C, et al, Experimental measurements of hot electrons generated by ultraintense (>1019 W/cm2) laser-plasma interactions on solid-density targets[J]. Physical Review Letters, 1998, 81(4): 822-825.

    [5] Beg F N, Bell A R, Dangor A E, et al, A study of picosecond laser-solid interactions up to 1019 W/cm2[J]. Physics of Plasmas, 1997, 4(2): 447-457.

    [6] Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 56(3): 219-221.

    [7] Yanovsky V, Chvykov V, Kalinchenko G, et al, Ultra-high intensity-300-Tw laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114.

    [8] Li Xiaoya, Wang Jiaxiang, Zhu Wenjun, et al, Enhanced inner-shell X-ray emission by femtosecond-laser irradiation of solid cone targets[J]. Physical Review E, 2011, 83(6): 046404.

    [9] Jonathan Workman, James R Fincke, George A Kyrala, et al. Uniform large-area x-ray imaging at 9 keV using a backlit pinhole[J]. Applied Optics, 2004, 44(6): 859.

    [10] Chen L M, Kando M, Xu M H, et al. Study of X-ray emission enhancement via a high-contrast femtosecond Laser interacting with a solid foil[J]. Physical Review Letters, 2008, 100(4): 045004.

    [11] Mao J Y, Chen L M, Ge X L, et al. Spectrally peaked electron beams produced via surface guiding and acceleration in femtosecond laser-solid interactions[J]. Physical Review E, 2012, 85: 025401.

    [12] Tian Ye, Wang Wentao, Wang Cheng, et al. Experimental study of K-shell X-ray emission generated from nanowire target irradiated by relativistic laser pulses[J]. Chinese Optics Letters, 2013, 11(3): 033501.

    [13] Rajeev P P, Taneja P, Ayyub P, et al. Metal nanoplasmas as bright sources of hard x-ray pulses[J]. Physical Review Letters, 2003, 90(11): 115002.

    [14] Sudipta mondal, Indrani Chakraborty, Saima Ahmad, et al. Highly enhanced hard x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses[J]. Physical Review B, 2011, 83(5): 035408.

    [15] Niu Gao, Tan Xiulan, Han Shangjun, et al. Structure and performance of Cu nanowire array target for intense radiation source[J]. High Power Laser and Particle Beams, 2011, 23(3): 681-684. (In Chinese)

    [16] Shang Wanli, Wei Huiyue, Li Zhichao, et al. Instantaneous X-Ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions[J]. Physics of Plasmas, 2013, 20(10): 102702.

    [17] Xiong Yong. Conversion efficiencies of ultra-short ultra-intensity laser to ultra hot based on Ka X-ray electron[D]. Mianyang: Chinese Academy of Engineering Physics, 2008: 90-92. (in Chinese)

    Wang Hongjian, Yang Qingguo, Ye Yan, Peng Qixian, Su Jingqin, Li Zeren. Multi-keV X-ray conversion efficiencies of laser-irradiated nano-velvet Cu targets[J]. Infrared and Laser Engineering, 2016, 45(11): 1106008
    Download Citation