• Opto-Electronic Engineering
  • Vol. 44, Issue 2, 161 (2017)
Wei Wang1、2、* and Hong Zhang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.02.004.1 Cite this Article
    Wei Wang, Hong Zhang. Strong coupling and ultrafast dynamics in organic semiconductor/metal hybrid nanostructures[J]. Opto-Electronic Engineering, 2017, 44(2): 161 Copy Citation Text show less
    References

    [1] Guebrou S A, Symonds C, Homeyer E, et al. Coherent emis-sion from a disordered organic semiconductor induced by strong coupling with surface plasmons [J]. Physical Review Letters, 2012, 108(6): 066401.

    [2] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferom-eters and ring resonators[J]. Nature, 2006, 440(7083): 508–511.

    [3] Lal S, Link S, Halas N J. Nano-optics from sensing to wave-guiding[J]. Nature Photonics, 2007, 1(11): 641–648.

    [4] Maier S A, Kik P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Materials, 2003, 2(4): 229–232.

    [5] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83–91.

    [6] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband super-oscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719.

    [7] Ma Renmin, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited Plasmon laser by total internal reflec-tion[J]. Nature Materials, 2011, 10(2): 110–113.

    [8] Lee K S, El-Sayed M A. Gold and silver nanoparticles in sensing and imaging: sensitivity of Plasmon response to size, shape, and metal composition[J]. The Journal of Physical Chemistry B, 2006, 110(39): 19220–19225.

    [9] Kneipp K, Wang Yang, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Physical Review Letters, 1997, 78(9): 1667–1670.

    [10] Nie Shuming, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102–1106.

    [11] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B: Chemical, 1999, 54(1–2): 3–15.

    [12] Kneipp K, Kneipp H, Itzkan I, et al. Surface-enhanced Raman scattering and biophysics[J]. Journal of Physics: Condensed Matter, 2002, 14(18): R597-R624.

    [13] Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science, 2004, 306(5698): 1002–1005.

    [14] Andrew P, Kitson S C, Barnes W L. Surface-plasmon energy gaps and photoabsorption[J]. Journal of Modern Optics, 1997, 44(2): 395–406.

    [15] Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12): 911–921.

    [16] Smith E J, Liu Zhaowei, Mei Yongfeng, et al. Combined surface Plasmon and classical waveguiding through metamaterial fiber design[J]. Nano Letters, 2010, 10(1): 1–5.

    [17] Wang Wei, Vasa P, Pomraenke R, et al. Interplay between strong coupling and radiative damping of excitons and surface Plasmon polaritons in hybrid nanostructures[J]. ACS Nano, 2014, 8(1): 1056–1064.

    [18] Dintinger J, Robel I, Kamat P V, et al. Terahertz all-optical molecule-Plasmon modulation[J]. Advanced Materials, 2006, 18(13): 1645–1648.

    [19] MacDonald K F, Sámson Z L, Stockman M I, et al. Ultrafast active plasmonics[J]. Nature Photonics, 2009, 3(1): 55–58.

    [20] Vasa P, Pomraenke R, Cirmi G, et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures[J]. ACS Nano, 2010, 4(12): 7559–7565.

    [21] Chang D E, Srensen A S, Demler E A, et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 2007, 3(11): 807–812.

    [22] Bergman D J, Stockman M I. Surface Plasmon amplification by stimulated emission of radiation: quantum generation of co-herent surface plasmons in nanosystems[J]. Physical Review Letters, 2003, 90(2): 027402.

    [23] Noginov M A, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser[J]. Nature, 2009, 460(7259): 1110– 1112.

    [24] Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 2009, 461(7264): 629–632.

    [25] Vasa P, Pomraenke R, Schwieger S, et al. Coherent exci-ton-surface-plasmon-polariton interaction in hybrid met-al-semiconductor nanostructures[J]. Physical Review Letters, 2008, 101(11): 116801.

    [26] Gómez D E, Vernon K C, Mulvaney P, et al. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals[J]. Nano Letters, 2010, 10(1): 274–278.

    [27] Hakala T K, Toppari J J, Kuzyk A, et al. Vacuum Rabi splitting and strong-coupling dynamics for surface-Plasmon polaritons and rhodamine 6G molecules[J]. Physical Review Letters, 2009, 103(5): 053602.

    [28] Vkevinen A I, Moerland R J, Rekola H T, et al. Plasmonic surface lattice resonances at the strong coupling regime[J]. Nano Letters, 2014, 14(4): 1721–1727.

    [29] Cade N I, Ritman-Meer T, Richards D. Strong coupling of localized plasmons and molecular excitons in nanostructured silver films[J]. Physical Review B, 2009, 79(24): 241404.

    [30] Rodriguez S R K, Rivas J G. Surface lattice resonances strongly coupled to rhodamine 6G excitons: tuning the Plas-mon-exciton-polariton mass and composition[J]. Optics Ex-press, 2013, 21(22): 27411–27421.

    [31] Shi L, Hakala T K, Rekola H T, et al. Spatial coherence prop-erties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes[J]. Physical Review Letters, 2014, 112(15): 153002.

    [32] Schwartz T, Hutchison J A, Genet C, et al. Reversible switching of ultrastrong light-molecule coupling[J]. Physical Review Letters, 2011, 106(19): 196405.

    [33] Valmorra F, Brll M, Schwaiger S, et al. Strong coupling be-tween surface plasmon polariton and laser dye rhodamine 800[J]. Applied Physics Letters, 2011, 99(5): 051110.

    [34] Baieva S V, Hakala T K, Toppari J J. Strong coupling between surface plasmon polaritons and sulforhodamine 101 dye[J]. Nanoscale Research Letters, 2012, 7(1): 191.

    [35] Dintinger J, Klein S, Bustos F, et al. Strong coupling between surface plasmon-polaritons and organic molecules in sub-wavelength hole arrays[J]. Physical Review B, 2005, 71(3): 035424.

    [36] Bellessa J, Bonnand C, Plenet J C, et al. Strong coupling between surface plasmons and excitons in an organic semi-conductor[J]. Physical Review Letters, 2004, 93(3): 036404.

    [37] Sugawara Y, Kelf T A, Baumberg J J, et al. Strong coupling between localized plasmons and organic excitons in metal nanovoids[J]. Physical Review Letters, 2006, 97(26): 266808.

    [38] Schlather A E, Large N, Urban A S, et al. Near-Field mediated plexcitonic coupling and giant Rabi splitting in individual me-tallic dimers[J]. Nano Letters, 2013, 13(7): 3281–3286.

    [39] Vasa P, Wang Wei, Pomraenke R, et al. Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates[J]. Nature Photonics, 2013, 7(2): 128–132.

    [40] Fidder H, Terpstra J, Wiersma D A. Dynamics of frenkel excitons in disordered molecular aggregates[J]. The Journal of Chem-ical Physics, 1991, 94(10): 6895–6907.

    [41] van Burgel M, Wiersma D A, Duppen K. The dynamics of one-dimensional excitons in liquids[J]. The Journal of Chemical Physics, 1995, 102(1): 20–33.

    [42] Froehly C, Lacourt A, Viénot J C. Time impulse response and time frequency response of optical pupils.: experimental con-firmations and applications[J]. Nouvelle Revue d'Optique, 1973, 4(4): 183–196.

    [43] Piasecki J, Colombeau B, Vampouille M, et al. Nouvelle méthode de mesure de la réponse impulsionnelle des fibres optiques[J]. Applied Optics, 1980, 19(22): 3749–3755.

    [44] Reynaud F, Salin F, Barthelemy A. Measurement of phase shifts introduced by nonlinear optical phenomena on subpi-cosecond pulses[J]. Optics Letters, 1989, 14(5): 275–277.

    [45] Scherer N F, Carlson R J, Matro A, et al. Fluorescence-detected wave packet interferometry: time resolved molecular spec-troscopy with sequences of femtosecond phase-locked puls-es[J]. The Journal of Chemical Physics, 1991, 95(3): 1487–1511.

    [46] Tokunaga E, Terasaki A, Kobayashi T. Induced phase modu-lation of chirped continuum pulses studied with a femtosecond frequency-domain interferometer[J]. Optics Letters, 1993, 18(5): 370–372.

    [47] Geindre J P, Audebert P, Rousse A, et al. Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma[J]. Optics Letters, 1994, 19(23): 1997–1999.

    [48] DeVoe R G, Brewer R G. Observation of superradiant and subradiant spontaneous emission of two trapped ions[J]. Physical Review Letters, 1996, 76(12): 2049–2052.

    [49] Hettich C, Schmitt C, Zitzmann J, et al. Nanometer resolution and coherent optical dipole coupling of two individual mole-cules[J]. Science, 2002, 298(5592): 385–389.

    [50] Akram U, Ficek Z, Swain S. Decoherence and coherent pop-ulation transfer between two coupled systems[J]. Physical Review A, 2000, 62(1): 013413.

    [51] Schmid S I, Evers J. Interplay of vacuum-mediated inter-and intra-atomic couplings in a pair of atoms[J]. Physical Review A, 2010, 81(6): 063805.

    [52] Dahmen C, Schmidt B, von Plessen G. Radiation damping in metal nanoparticle pairs[J]. Nano Letters, 2007, 7(2): 318–322.

    [53] Chen Y N, Chuu D S, Brandes T. Current detection of super-radiance and induced entanglement of double quantum dot excitons[J]. Physical Review Letters, 2003, 90(16): 166802.

    [54] Hübner M, Kuhl J, Stroucken T, et al. Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures[J]. Physical Review Letters, 1996, 76(22): 4199–4202.

    [55] Ropers C, Park D J, Stibenz G, et al. Femtosecond light transmission and subradiant damping in plasmonic crystals[J]. Physical Review Letters, 2005, 94(11): 113901.

    [56] Wang Hui, Brandl D W, Le Fei, et al. Nanorice: a hybrid plasmonic nanostructure[J]. Nano Letters, 2006, 6(4): 827–832.

    [57] Choi W B, Chung D S, Kang J H, et al. Fully sealed, high-brightness carbon-nanotube field-emission display[J]. Applied Physics Letters, 1999, 75(20): 3129–3131.

    [58] Sonnefraud Y, Verellen N, Sobhani H, et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities[J]. ACS Nano, 2010, 4(3): 1664–1670.

    [59] Luk'yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707–715.

    [60] Sermage B, Long S, Abram I, et al. Time-resolved sponta-neous emission of excitons in a microcavity: behavior of the individual exciton-photon mixed states[J]. Physical Review B, 1996, 53(24): 16516–16523.

    [61] Bloch J, Marzin J Y. Photoluminescence dynamics of cavity polaritons under resonant excitation in the picosecond range[J]. Physical Review B, 1997, 56(4): 2103–2108.

    [62] Baumberg J J, Armitage A, Skolnick M S, et al. Suppressed polariton scattering in semiconductor microcavities[J]. Physical Review Letters, 1998, 81(3): 661–664.

    [63] Tassone F, Piermarocchi C, Savona V, et al. Bottleneck effects in the relaxation and photoluminescence of microcavity polar-itons [J]. Physical Review B, 1997, 56(12): 7554–7563.

    Wei Wang, Hong Zhang. Strong coupling and ultrafast dynamics in organic semiconductor/metal hybrid nanostructures[J]. Opto-Electronic Engineering, 2017, 44(2): 161
    Download Citation