• Journal of Inorganic Materials
  • Vol. 38, Issue 6, 606 (2023)
Junliang LIN1 and Zhanjie WANG2,*
Author Affiliations
  • 11. College of Light Industry, Liaoning University, Shenyang 110036, China
  • 22. School of Materials Sciences and Engineering, Shenyang University of Technology, Shenyang 110870, China
  • show less
    DOI: 10.15541/jim20220601 Cite this Article
    Junliang LIN, Zhanjie WANG. Research Progress on Ferroelectric Superlattices[J]. Journal of Inorganic Materials, 2023, 38(6): 606 Copy Citation Text show less
    References

    [1] L W MARTIN, A M RAPPE. Thin-film ferroelectric materials and their applications. Nature Reviews Materials, 2, 16087(2016).

    [2] Z J WANG, Y BAI. Resistive switching behavior in ferroelectric heterostructures. Small, 15, 1805088(2019).

    [3] J Y KIM, M J CHOI, H W JANG. Ferroelectric field effect transistors: progress and perspective. APL Materials, 9, 021102(2021).

    [4] Y C LEE, C C TSAI, C Y LI et al. Fabrication and function examination of PZT-based MEMS accelerometers. Ceramics International, 47, 24458(2021).

    [5] R RAMESH, D G SCHLOM. Creating emergent phenomena in oxide superlattices. Nature Reviews Materials, 4, 257(2019).

    [6] M DAWBER, E BOUSQUET. New developments in artificially layered ferroelectric oxide superlattices. MRS Bulletin, 38, 1048(2013).

    [7] D A TENNE, A BRUCHHAUSEN, N D LANZILLOTTI-KIMURA et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science, 313, 1614(2006).

    [8] S S A SEO, J H LEE, H N LEE et al. Ferroelectricity in artificial bicolor oxide superlattices. Advanced Materials, 19, 2460(2007).

    [9] B HE, Z WANG. Enhancement of the electrical properties in BaTiO3/PbZr0.52Ti0.48O3 ferroelectric superlattices. ACS Applied Materials & Interfaces, 8, 6736(2016).

    [10] H N LEE, H M CHRISTEN, M F CHISHOLM et al. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature, 433, 395(2005).

    [11] L HONG, P WU, Y LI et al. Piezoelectric enhancement of (PbTiO3)m/(BaTiO3)n ferroelectric superlattices through domain engineering. Physical Review B, 90, 174111(2014).

    [12] Z WANG, H CAO, Q LIU et al. The enhanced ferroelectricity in Sr1-δTiO3/BaTiO3superlattices with Sr deficiency. Journal of Physics D: Applied Physics, 53, 314004(2020).

    [13] E BOUSQUET, M DAWBER, N STUCKI et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature, 452, 732(2008).

    [14] B XU, D WANG, H J ZHAO et al. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Advanced Functional Materials, 25, 3626(2015).

    [15] J RAVICHANDRAN, A K YADAV, R CHEAITO et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nature Materials, 13, 168(2014).

    [16] Y CAO, Z WANG, S Y PARK et al. Artificial two-dimensional polar metal at room temperature. Nature Communications, 9, 1547(2018).

    [17] M YE, S HU, Y ZHU et al. Electric polarization switching on an atomically thin metallic oxide. Nano Letters, 21, 144(2021).

    [18] M K NIRANJAN, Y WANG, S S JASWAL et al. Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. Physical Review Letters, 103, 016804(2009).

    [19] M VERISSIMO-ALVES, P GARCIA-FERNANDEZ, D I BILC et al. Highly confined spin-polarized two-dimensional electron gas in SrTiO3/SrRuO3 superlattices. Physical Review Letters, 108, 107003(2012).

    [20] H OHTA, S KIM, Y MUNE et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 6, 129(2007).

    [21] P X ZHOU, H M LIU, Z B YAN et al. Magnetic properties and electronic structures of (YTiO3)2/(BaTiO3)n superlattices. Journal of Applied Physics, 115, 17(2014).

    [22] P ZUBKO, J C WOJDEŁ, M HADJIMICHAEL et al. Negative capacitance in multidomain ferroelectric superlattices. Nature, 534, 524(2016).

    [23] W GAO, A KHAN, X MARTI et al. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. Nano Letters, 14, 5814(2014).

    [24] M GRAF, H ARAMBERRI, P ZUBKO et al. Giant voltage amplification from electrostatically induced incipient ferroelectric states. Nature Materials, 21, 1252(2022).

    [25] A K YADAV, C T NELSON, S L HSU et al. Observation of polar vortices in oxide superlattices. Nature, 530, 198(2016).

    [26] Z HONG, L Q CHEN. Switchable polar spirals in tricolor oxide superlattices. Acta Materialia, 164, 493(2019).

    [27] S DAS, Y L TANG, Z HONG et al. Observation of room- temperature polar skyrmions. Nature, 568, 368(2019).

    [28] Y L TANG, Y L ZHU, X L MA. Topological polar structures in ferroelectric oxide films. Journal of Applied Physics, 129, 200904(2021).

    [29] Z HONG, A R DAMODARAN, F XUE et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Letters, 17, 2246(2017).

    [30] H W JANG, A KUMAR, S DENEV et al. Ferroelectricity in strain-free SrTiO3 thin films. Physical Review Letters, 104, 197601(2010).

    [31] B LUO, X WANG, E TIAN et al. Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric superlattices from first-principles calculations. Journal of Materials Chemistry C, 3, 8625(2015).

    [32] H TABATA, H TANAKA, T KAWAI. Formation of artificial BaTiO3/SrTiO3 superlattices using pulsed laser deposition and their dielectric properties. Applied Physics Letters, 65, 1970(1994).

    [33] S DAS, Z HONG, M MCCARTER et al. A new era in ferroelectrics. APL Materials, 8, 120902(2020).

    [34] S DAS, A GHOSH, M R MCCARTER et al. Perspective: emergent topologies in oxide superlattices. APL Materials, 6, 100901(2018).

    [35] M BENYOUSSEF, J BELHADI, A LAHMAR et al. Tailoring the dielectric and energy storage properties in BaTiO3/BaZrO3 superlattices. Materials Letters, 234, 279(2019).

    [36] Z SUN, C MA, M LIU et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Advanced Materials, 29, 1604427(2017).

    [37] H ARAMBERRI, N S FEDOROVA, J INIGUEZ. Ferroelectric/ paraelectric superlattices for energy storage. Science Advances, 8, eabn4880(2022).

    [38] Y YUN, L MUHLENBEIN, D S KNOCHE et al. Strongly enhanced and tunable photovoltaic effect in ferroelectric- paraelectric superlattices. Science Advances, 7, eabe4206(2021).

    [39] Y JI, W J CHEN, Y ZHENG. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics D: Applied Physics, 53, 505302(2020).

    [40] J L LIN, Z J WANG, X ZHAO et al. Microstructures and ferroelectric properties of PbTiO3/PbZrO3 superlattices deposited by pulse laser deposition. Ceramics International, 44, 20664(2018).

    [41] T CHOI, J LEE. Structural and dielectric properties of artificial PbZrO3/PbTiO3 superlattices grown by pulsed laser deposition. Thin Solid Films, 475, 283(2005).

    [42] Y BASTANI, N BASSIRI-GHARB. Enhanced dielectric and piezoelectric response in PZT superlattice-like films by leveraging spontaneous Zr/Ti gradient formation. Acta Materialia, 60, 1346(2012).

    [43] I VREJOIU, Y ZHU, RHUN G LE et al. Structure and properties of epitaxial ferroelectric PbZr0.4Ti0.6O3/PbZr0.6Ti0.4O3 superlattices grown on SrTiO3 (001) by pulsed laser deposition. Applied Physics Letters, 90, 072909(2007).

    [44] E LUPI, A GHOSH, S SAREMI et al. Large polarization and susceptibilities in artificial morphotropic phase boundary PbZr1-xTixO3 superlattices. Advanced Electronic Materials, 6, 1901395(2020).

    [45] Y LU. Dielectric and ferroelectric behaviors in Pb(Mg1/3Nb2/3)O3- PbTiO3 rhombohedral/tetragonal superlattices. Applied Physics Letters, 85, 979(2004).

    [46] Q LIN, D WANG, Z CHEN et al. Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices. ACS Applied Materials & Interfaces, 7, 26301(2015).

    [47] I KANNO, S HAYASHI, R TAKAYAMA et al. Superlattices of PbZrO3 and PbTiO3 prepared by multi-ion-beam sputtering. Applied Physics Letters, 68, 328(1996).

    [48] Y C LIANG, Y C LIANG. Effects of substrate temperature on the physical properties of strained BaTiO3/LaNiO3 artificial superlattices. Journal of Crystal Growth, 285, 345(2005).

    [49] J Y TSENG, T B WU. Dielectric enhancement in (001)-textured BaTiO3/LaNiO3superlattice. Materials Chemistry and Physics, 88, 433(2004).

    [50] J XIA, W SIEMONS, G KOSTER et al. Critical thickness for itinerant ferromagnetism in ultrathin films of SrRuO3. Physical Review B, 79, 140407(2009).

    [51] R SCHERWITZL, S GARIGLIO, M GABAY et al. Metal- insulator transition in ultrathin LaNiO3 films. Physical Review Letters, 106, 246403(2011).

    [52] Z LIAO, F LI, P GAO et al. Origin of the metal-insulator transition in ultrathin films of La2/3Sr1/3MnO3. Physical Review B, 92, 125123(2015).

    [53] S J CALLORI, J GABEL, D SU et al. Ferroelectric PbTiO3/ SrRuO3 superlattices with broken inversion symmetry. Physical Review Letters, 109, 067601(2012).

    [54] S E ROWLEY, L J SPALEK, R P SMITH et al. Ferroelectric quantum criticality. Nature Physics, 10, 367(2014).

    [55] L H YIN, T F SHI, R R ZHANG et al. Electric dipoles via Cr3+(d3) ion off-center displacement in perovskite DyCrO3. Physical Review B, 98, 054301(2018).

    [56] R HE, J L LIN, Q LIU et al. Emergent ferroelectricity in otherwise nonferroelectric oxides by oxygen vacancy design at heterointerfaces. ACS Applied Materials & Interfaces, 12, 45602(2020).

    [57] T TSURUMI, T HARIGAI, D TANAKA et al. Artificial ferroelectricity in perovskite superlattices. Applied Physics Letters, 85, 5016(2004).

    [58] K YANG, C WANG, J LI et al. Structural and polarization properties of short-period SrZrO3/SrTiO3superlattices. Physical Review B, 75, 224117(2007).

    [59] J L LIN, Y SUN, R HE et al. Colossal room-temperature ferroelectric polarizations in SrTiO3/SrRuO3 superlattices induced by oxygen vacancies. Nano Letters, 22, 7104(2022).

    [60] S STARSCHICH, S MENZEL, U BÖTTGER. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Applied Physics Letters, 108, 032903(2016).

    [61] J L LIN, Z J WANG, X ZHAO et al. Significantly enhanced ferroelectric and dielectric properties in BaTiO3/LaNiO3 superlattices. Scripta Materialia, 179, 102(2020).

    [62] J L LIN, Z J WANG, X ZHAO et al. Effect of SrRuO3 layer thickness on electrical properties of Pb(Zr0.52Ti0.48)O3/SrRuO3 superlattices. Ceramics International, 46, 9328(2020).

    [63] D O’NEILL, R M BOWMAN, J M GREGG. Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Applied Physics Letters, 77, 1520(2000).

    [64] B M DARINSKII, A S SIDORKIN, A S SIGOV. Influence of misfit stresses on the dielectric permeability of ferroelectric superlattices BaTiO3/BaZrO3. Nanocomposites, 7, 154(2021).

    [65] M J CHEN, X K NING, S F WANG et al. Enhanced polarization and dielectricity in BaTiO3:NiO nanocomposite films modulated by the microstructure. RSC Advances, 7, 38231(2017).

    [66] M B OKATAN, I B MISIRLIOGLU, S P ALPAY. Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties. Physical Review B, 82, 094115(2010).

    [67] M HADJIMICHAEL, Y LI, L YEDRA et al. Domain structure and dielectric properties of metal-ferroelectric superlattices with asymmetric interfaces. Physical Review Materials, 4, 094415(2020).

    [68] P K PETROV, B ZOU, Y WANG et al. STO/BTO modulated superlattice multilayer structures with atomically sharp interfaces. Advanced Materials Interfaces, 1, 1300116(2014).

    [69] I KANNO. Piezoelectric MEMS: ferroelectric thin films for MEMS applications. Japanese Journal of Applied Physics, 57, 040101(2018).

    [70] J SINSHEIMER, S J CALLORI, B BEIN et al. Engineering polarization rotation in a ferroelectric superlattice. Physical Review Letters, 109, 167601(2012).

    [71] V R COOPER, K M RABE. Enhancing piezoelectricity through polarization-strain coupling in ferroelectric superlattices. Physical Review B, 79, 180101(2009).

    [72] N D SHARMA, C M LANDIS, P SHARMA. Piezoelectric thin- film superlattices without using piezoelectric materials. Journal of Applied Physics, 108, 024304(2010).

    [73] C JIN, W GENG, L WANG et al. Tuning ferroelectricity and ferromagnetism in BiFeO3/BiMnO3 superlattices. Nanoscale, 12, 9810(2020).

    [74] M GUO, G TAN, W YANG et al. Resistive switching and ferroelectric properties in BiFeO3 superlattice films. Materials Letters, 228, 13.

    [75] Z CUI, A J GRUTTER, H ZHOU et al. Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer. Science Advances, 6, eaay0114(2020).

    [76] S G JEONG, G HAN, S SONG et al. Propagation control of octahedral tilt in SrRuO3via artificial heterostructuring. Advanced Science, 2001643(2020).

    [77] M GU, Q XIE, X SHEN et al. Magnetic ordering and structural phase transitions in a strained ultrathin SrRuO3/SrTiO3 superlattice. Physical Review Letters, 109, 157003(2012).

    [78] P GARCÍA-FERNÁNDEZ, M VERISSIMO-ALVES, D I BILC et al. First-principles modeling of the thermoelectric properties of SrTiO3/SrRuO3superlattices. Physical Review B, 86, 085305(2012).

    [79] K J CHOI. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 306, 1005(2004).

    [80] D G SCHLOM, L Q CHEN, C B EOM et al. Strain tuning of ferroelectric thin films. Annual Review of Materials Research, 37, 589(2007).

    [81] M P WARUSAWITHANA, C S KENGLE, X ZHAN et al. Asymmetric ferroelectricity by design in atomic-layer superlattices with broken inversion symmetry. Physical Review B, 104, 085103(2021).

    [82] J HWANG, Z FENG, N CHARLES et al. Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Materials Today, 31, 100(2019).

    [83] Z Y ZHU, S Q WANG, Y M FU. First-principles study of properties of strained PbTiO3/KTaO3 superlattice. Chinese Physics Letters, 33, 026302(2016).

    [84] J M RONDINELLI, C J FENNIE. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Advanced Materials, 24, 1961(2012).

    [85] P AGUADO-PUENTE, P GARCIA-FERNANDEZ, J JUNQUERA. Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Physical Review Letters, 107, 217601(2011).

    [86] S M NAKHMANSON, K M RABE, D VANDERBILT. Polarization enhancement in two- and three-component ferroelectric superlattices. Applied Physics Letters, 87, 102906(2005).

    [87] B CHEN, N GAUQUELIN, N STRKALJ et al. Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon. Nature Communications, 13, 265(2022).

    [88] N ORTEGA, A KUMAR, O RESTO et al. Compositional engineering of BaTiO3/(Ba,Sr)TiO3 ferroelectric superlattices. Journal of Applied Physics, 114, 104102(2013).

    [89] K BOLDYREVA, L PINTILIE, A LOTNYK et al. Thickness- driven antiferroelectric-to-ferroelectric phase transition of thin PbZrO3 layers in epitaxial PbZrO3/Pb(Zr0.8Ti0.2)O3 multilayers. Applied Physics Letters, 91, 122915(2007).

    [90] E KHESTANOVA, N DIX, I FINA et al. Untangling electrostatic and strain effects on the polarization of ferroelectric superlattices. Advanced Functional Materials, 26, 6446(2016).

    [91] K G LIM, K H CHEW, D Y WANG et al. Charge compensation phenomena for polarization discontinuities in ferroelectric superlattices. Europhysics Letters, 108, 67011(2014).

    [92] K H CHEW, K G LIM, L H ONG. Polarization discontinuity and interface charges in ferroelectric superlattices. Ferroelectrics, 490, 149(2016).

    [93] X WU, K M RABE, D VANDERBILT. Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3superlattices. Physical Review B, 83, 020104(2011).

    [94] S S A SEO, H N LEE. Strain-coupled ferroelectric polarization in BaTiO3-CaTiO3 superlattices. Applied Physics Letters, 94, 232904(2009).

    [95] P ZUBKO, N JECKLIN, A TORRES-PARDO et al. Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices. Nano Letters, 12, 2846(2012).

    [96] D S AIDHY, K RAWAT. Coupling between interfacial strain and oxygen vacancies at complex-oxides interfaces. Journal of Applied Physics, 129, 171102(2021).

    [97] W LI, R ZHAO, R TANG et al. Vertical-interface-manipulated conduction behavior in nanocomposite oxide thin films. ACS Applied Materials & Interfaces, 6, 5356(2014).

    [98] Y LIU, Y L ZHU, Y L TANG et al. Local enhancement of polarization at PbTiO3/BiFeO3 interfaces mediated by charge transfer. Nano Letters, 17, 3619(2017).

    [99] J L LIN, R HE, Z LU et al. Oxygen vacancy enhanced ferroelectricity in BTO:SRO nanocomposite films. Acta Materialia, 199, 9(2020).

    [100] V R COOPER, K JOHNSTON, K M RABE. Polarization enhancement in short period superlattices via interfacial intermixing. Physical Review B, 76, 020103(2007).

    [101] N A PERTSEV, M TYUNINA. Interfacial nanolayers and permittivity of ferroelectric superlattices. Journal of Applied Physics, 109, 126101(2011).

    [102] C L HUNG, Y L CHUEH, T B WU et al. Characteristics of constrained ferroelectricity in PbZrO3/BaZrO3 superlattice films. Journal of Applied Physics, 97, 034105(2005).

    [103] Y ISHIBASHI, N OHASHI, T TSURUMI. Structural refinement of X-ray diffraction profile for artificial superlattices. Japanese Journal of Applied Physics, 39, 186(2000).

    [104] D KAN, R ASO, R SATO et al. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nature Materials, 15, 432(2016).