• Advanced Photonics
  • Vol. 5, Issue 5, 056005 (2023)
Wenhui Wang1、*, Antonio Günzler1, Bodo D. Wilts1、2, Ullrich Steiner1, and Matthias Saba1、*
Author Affiliations
  • 1University of Fribourg, Adolphe Merkle Institute, Fribourg, Switzerland
  • 2University of Salzburg, Department of Chemistry and Physics of Materials, Salzburg, Austria
  • show less
    DOI: 10.1117/1.AP.5.5.056005 Cite this Article Set citation alerts
    Wenhui Wang, Antonio Günzler, Bodo D. Wilts, Ullrich Steiner, Matthias Saba. Unconventional bound states in the continuum from metamaterial-induced electron acoustic waves[J]. Advanced Photonics, 2023, 5(5): 056005 Copy Citation Text show less
    References

    [1] J. von Neumann, E. P. Wigner. Uber merkwürdige diskrete Eigenwerte. über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z., 30, 467-470(1929).

    [2] F. H. Stillinger, D. R. Herrick. Bound states in the continuum. Phys. Rev. A, 11, 446-454(1975).

    [3] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mater., 5, 16048(2016).

    [4] D. Marinica, A. Borisov, S. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [5] C. W. Hsu et al. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [6] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [7] W. Chen, Y. Chen, W. Liu. Singularities and Poincaré indices of electromagnetic multipoles. Phys. Rev. Lett., 122, 153907(2019).

    [8] B. Zhen et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [9] H. M. Doeleman et al. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics, 12, 397-401(2018).

    [10] Y. Guo, M. Xiao, S. Fan. Topologically protected complete polarization conversion. Phys. Rev. Lett., 119, 167401(2017).

    [11] Y. Yang et al. Analytical perspective for bound states in the continuum in photonic crystal slabs. Phys. Rev. Lett., 113, 037401(2014).

    [12] A. Lyapina et al. Bound states in the continuum in open acoustic resonators. J. Fluid Mech., 780, 370-387(2015).

    [13] Z. Yu et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).

    [14] Y. Chen et al. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [15] S. I. Azzam, A. V. Kildishev. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater., 9, 2001469(2021).

    [16] S. Romano et al. Optical biosensors based on photonic crystals supporting bound states in the continuum. Materials, 11, 526(2018).

    [17] C. Huang et al. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [18] B. Wang et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).

    [19] A. Kodigala et al. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [20] K. Koshelev et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [21] M. V. Rybin et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [22] S. T. Ha et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotech., 13, 1042-1047(2018).

    [23] L. Fonda, R. G. Newton. Theory of resonance reactions. Ann. Phys., 10, 490-515(1960).

    [24] H. Friedrich, D. Wintgen. Physical realization of bound states in the continuum. Phys. Rev. A, 31, 3964-3966(1985).

    [25] V. A. Sablikov, A. A. Sukhanov. Helical bound states in the continuum of the edge states in two dimensional topological insulators. Phys. Lett. A, 379, 1775-1779(2015).

    [26] W. Liu et al. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett., 123, 116104(2019).

    [27] T. Yoda, M. Notomi. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking. Phys. Rev. Lett., 125, 053902(2020).

    [28] Z. F. Sadrieva et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics, 4, 723-727(2017).

    [29] N. Engheta, R. W. Ziolkowski. Metamaterials: Physics and Engineering Explorations(2006).

    [30] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [31] J. Pendry. A chiral route to negative refraction. Science, 306, 1353-1355(2004).

    [32] I. Liberal, N. Engheta. Near-zero refractive index photonics. Nat. Photonics, 11, 149-158(2017).

    [33] A. M. Mahmoud, N. Engheta. Wave-matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun., 5, 5638(2014).

    [34] S. S. Oh, O. Hess. Chiral metamaterials: enhancement and control of optical activity and circular dichroism. Nano Converg., 2, 24(2015).

    [35] E. S. A. Goerlitzer et al. The beginner’s guide to chiral plasmonics: mostly harmless theory and the design of large-area substrates. Adv. Opt. Mater., 9, 2100378(2021).

    [36] C. Kilchoer et al. Strong circular dichroism in single gyroid optical metamaterials. Adv. Opt. Mater., 8, 1902131(2020).

    [37] A. Demetriadou, J. B. Pendry. Taming spatial dispersion in wire metamaterial. J. Phys. Condens. Matter, 20, 295222(2008).

    [38] S. I. Maslovski, M. G. Silveirinha. Nonlocal permittivity from a quasistatic model for a class of wire media. Phys. Rev. B, 80, 245101(2009).

    [39] J. A. Dolan et al. Optical properties of gyroid structured materials: from photonic crystals to metamaterials. Adv. Opt. Mater., 3, 12-32(2015).

    [40] A. Alvarez-Fernandez et al. Block copolymer directed metamaterials and metasurfaces for novel optical devices. Adv. Opt. Mater., 9, 2100175(2021).

    [41] W.-J. Chen et al. Metamaterials with index ellipsoids at arbitrary k-points. Nat. Commun., 9, 2086(2018).

    [42] H. Latioui, M. G. Silveirinha. Light tunneling anomaly in interlaced metallic wire meshes. Phys. Rev. B, 96, 195132(2017).

    [43] D. Sakhno, E. Koreshin, P. A. Belov. Longitudinal electromagnetic waves with extremely short wavelength. Phys. Rev. B, 104, L100304(2021).

    [44] K. Hur et al. Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks. Angew. Chem. Int. Ed., 50, 11985-11989(2011).

    [45] A. W. Powell et al. Dark mode excitation in three-dimensional interlaced metallic meshes. ACS Photonics, 8, 841-846(2021).

    [46] W. Wang et al. Photonic topological fermi nodal disk in non-Hermitian magnetic plasma. Light Sci. Appl., 9, 40(2020).

    [47] W. Gao et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun., 7, 12435(2016).

    [48] M. S. Dresselhaus. Group Theory : Application to the Physics of Condensed Matter(2008).

    [49] S. P. Gary, R. L. Tokar. Electron-acoustic mode. Phys. Fluids, 28, 2439-2441(1985).

    [50] D. S. Montgomery et al. Observation of stimulated electron-acoustic-wave scattering. Phys. Rev. Lett., 87, 155001(2001).

    [51] M. A. Hellberg et al. Electron-acoustic waves in the laboratory: an experiment revisited. J. Plasma Phys., 64, 433-443(2000).

    [52] S. Singh, G. Lakhina. Generation of electron-acoustic waves in the magnetosphere. Planet. Space Sci., 49, 107-114(2001).

    [53] J. B. Pendry et al. Low frequency plasmons in thin-wire structures. J. Phys. Condens. Matter, 10, 4785-4809(1998).

    [54] M. G. Silveirinha, C. A. Fernandes. Homogenization of 3-D-connected and nonconnected wire metamaterials. IEEE Trans. Microwave Theory Tech., 53, 1418-1430(2005).

    [55] J. Shin, J.-T. Shen, S. Fan. Three-dimensional electromagnetic metamaterials that homogenize to uniform non-Maxwellian media. Phys. Rev. B, 76, 113101(2007).

    [56] S. Lannebere, T. A. Morgado, M. G. Silveirinha. First principles homogenization of periodic metamaterials and application to wire media. C.R. Phys., 21, 367-388(2020).

    [57] J. Joannopoulos et al. Photonic Crystals: Molding the Flow of Light(2011).

    [58] M. Saba, G. E. Schroder-Turk. Bloch modes and evanescent modes of photonic crystals: weak form solutions based on accurate interface triangulation. Crystals, 5, 14-44(2015).

    [59] L. Rayleigh. On the dynamical theory of gratings. Proc. R. Soc. Lond. A, 79, 399-416(1907).

    [60] A. Sommerfeld. Partial Differential Equations in Physics(1949).

    [61] R. Fitzpatrick. Plasma Physics: An Introduction(2015).

    [62] D. Jin et al. Topological magnetoplasmon. Nat. Commun., 7, 13486(2016).

    [63] S. I. Maslovski, S. A. Tretyakov, P. A. Belov. Wire media with negative effective permittivity: a quasi-static model. Microwave Opt. Technol. Lett., 35, 47-51(2002).

    [64] O. Delgado-Friedrichs, M. O’Keeffe. Reticular chemistry structure resource.

    [65] S. G. Markande et al. A chiral family of triply-periodic minimal surfaces derived from the quartz network(2018).

    [66] W. Setyawan, S. Curtarolo. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci., 49, 299-312(2010).

    [67] T. Bradley, C. Bradley, A. Cracknell. The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups(1972).

    [68] M. I. Aroyo. International Tables for Crystallography A: Space-group Symmetry, A(2016).

    [69] M. Saba et al. Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets. Phys. Rev. B, 88, 245116(2013).

    Wenhui Wang, Antonio Günzler, Bodo D. Wilts, Ullrich Steiner, Matthias Saba. Unconventional bound states in the continuum from metamaterial-induced electron acoustic waves[J]. Advanced Photonics, 2023, 5(5): 056005
    Download Citation