• Infrared Technology
  • Vol. 44, Issue 5, 437 (2022)
Bo WANG1、2、3, Libin TANG1、3、*, Yuping ZHANG1、3, Gongrong DENG1, Wenbin ZUO1、3, and Peng ZHAO1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology, 2022, 44(5): 437 Copy Citation Text show less
    References

    [1] Her T, Finlay R J, WU C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675.

    [3] Chou S, Krauss P, Renstrom P, et al. Imprint lithography with 25- nanometer resolution[J]. Science, 1996, 272(5258): 85-87.

    [4] CHOU S, Keimel C, GU J, et al. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837.

    [5] Carey J, Crouch C, SHEN M, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 2005, 30(14): 1773-1775.

    [6] HUANG Z, Carey J, LIU M, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89: 033506.

    [7] Pralle M U, Carey J E, Homayoon H, et al. Black silicon enhanced photodetectors: a path to IR CMOS[C]//Proc. of SPIE, 2010, 7660: 76600N.

    [8] SU Y, JIANG Y, WU Z, et al. Spectral response of metal -semiconductor -metal photodetector based on black silicon[J]. Energy Procedia, 2011, 12: 615-619.

    [9] Said A, Recht D, Sullivan J, et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes[J]. Applied Physics Letters, 2011, 99(7): 1850-236.

    [11] HU S, HAN P, WANG S, et al. Improved photoresponse characteristics in Se -doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semiconductorence & Technology, 2012, 27(10): 102002.

    [12] SU Y, LI S, WU Z, et al. High responsivity MSM black silicon photodetector[J]. Materials Science in Semiconductor Processing, 2013, 16(3): 619-624.

    [13] WANG X. Fabrication of tellurium doped silicon detector by fmtosecond laser and excimer laser[J]. Chinese Journal of Lasers, 2013, 40(3): 0302001.

    [15] Steglich M, Oehme M, K?sebier T, et al. Ge-on-Si photodiode with black silicon boosted responsivity[J]. Appl. Phys. Lett., 2015, 107: 051103.

    [17] ZHONG H, GUO A, GUO G, et al. The enhanced light absorptance and device application of nanostructured black silicon fabricated by metal-assisted chemical etching[J]. Nanoscale Research Letters, 2016, 11: 322.

    [18] Heinonen J, Juntunen M, Laine H S, et al. Black silicon n-type photodiodes with high response over wide spectral range[C]//Proc. of SPIE, 2017, 10231: 102310X.

    [19] MENG W, ZHONG H, HOU W, et al. Comparison of different etching methods on the morphology and semiconductor characters of black silicon[C]//IOP Conf. Series: Materials Science and Engineering, 2017, 250: 012015.

    [20] ZHAO J, LI C, LI X, et al. NIR photodetector based on nanosecond laser-modified silicon[J]. IEEE Transactions On Electron Devices, 2018, 65(11): 4905-4909.

    [21] HU F, DAI X, ZHOU Z, et al. Black silicon Schottky photodetector in subbandgap near-infrared regime[J]. Optics Express, 2019, 27(3): 3161-3168.

    [23] HUANG S, WU Q, JIA Z, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 9(7): 1901808.

    [25] JIA Z, WU Q, JIN X, et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 2020, 28(4): 5239-5247.

    [26] YANG Y, ZHAO J, LI C, et al. Sub-bandgap absorption and photo-response of molybdenum heavily doped black silicon fabricated by a femtosecond laser[J]. Optics Letters, 2021, 46(13): 3300-3303.

    [28] Martin S, Matthias Z, Astrid B, et al. A normal-incidence PtSi photoemissive detector with black silicon light-trapping[J]. Journal of Applied Physics, 2013, 114: 183102.

    [29] Younkin R, Carey J, Mazur E, et al. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses[J]. Journal of Applied Physics, 2003, 93(5): 2626-2629.

    [31] Shahnawaz U, Md R H, Mohd Z P. Aluminium-assisted chemical etching for fabrication of black silicon[J]. Materials Chemistry and Physics, 2021, 265: 124469.

    [33] JIN X, WU Q, HUANG S, et al. High-performance black silicon photodetectors operating over a wide temperature range[J]. Optical Materials, 2021, 113: 110874.

    [34] YU X, LV Z, LI C, et al. The optical and electrical properties of Co-doped black silicon textured by a femtosecond laser and Its Application to Infrared Light Sensing[J]. IEEE Sensors Journal, 2016, 16(13): 5227-5231.

    [35] ZHAO J, LV Z, LI C, et al. Infrared photodiode of textured silicon irradiated under mixed gas by femtosecond laser[J]. IEEE Sensors Journal, 2017, 17(4): 1000-1004.

    [36] WANG X, HUANG Y, LIU D, et al. High response in a tellurium -supersaturated silicon photodiode[J]. Chinese Physics Letters, 2013, 30(3): 36101-036101.

    [43] MI G, LV J, QUE L, et al. A Dual Four-Quadrant Photodetector Based on Near-Infrared Enhanced Nanometer Black Silicon[J]. Nanoscale Research Letters, 2021, 16: 38.

    [44] MA S, LIU X, SUN H, et al. Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere[J]. Journal of the Optical Society of America B, 2020, 37(3): 730-735.

    [48] Hamamatsu Photonics. Silicon photodiode S1336-44BK for UV to near IR precision photometry[DB/OL]. http://www.hamamatsu.com.cn/ product/17581.html.

    [49] Moloney A M, Wall L, Mathewson A, et al. Novel black silicon PIN photodiodes[C]//Proc. of SPIE, 2006, 6119: 61190B.

    [54] Müllerová J, Scholtza L, ?uri?ováb J, et al. Angle- and polarization resolved antireflection properties of black silicon prepared by electrochemical etching supported by external electric field[J]. Applied Surface Science, 2018, 461: 182-189.

    [55] XU G, CHENG S, CAI B. Black silicon as absorber for photo- thermal -electric devices[J]. Materials Express, 2018, 8(3): 294-298.

    [56] HUANG Y, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774.

    [57] Heinonen J, Haarahiltunen A, Serue M D, et al. High-sensitivity NIR photodiodes using black silicon[C]//Proc. of SPIE, 2020, 11276: 112760G.

    [58] Kim K, Yoon S, Seo M, et al. Whispering gallery modes enhance the near-infrared photoresponse of hourglass-shaped silicon nanowire photodiodes[J]. Nature Electronics, 2019, 2(12): 572-579.

    [59] Pralle M, Carey J, Homayoon H, et al. IR CMOS: infrared enhanced silicon imaging[C]//Proc. of SPIE, 2013, 8704: 870407.

    [60] Petersen S D, Davidsen R S, Alcalá L R, et al. Improvement of infrared detectors for tissue oximetry using black silicon nanostructures[J]. Procedia Engineering, 2014, 87: 652-655.

    [61] Pralle M, Carey J, Vineis C, et al. IR CMOS: the digital nightvision solution to sub-1 mLux imaging[C]//Proc. of SPIE, 2015, 9451: 945108.

    [62] Juntunen M A, Heinonen J, V?h?nissi V, et al. Near-unity quantum efficiency of broadband black silicon photodiodes with an induced junction[J]. Nature Photonics, 2016, 10(12): 777-781.

    [63] Garin M, Heinonen J, Werner L, et al. Black-silicon ultraviolet photodiodes achieve external quantum efficiency above 130%[J]. Physical Review Letters, 2020, 125: 117702.

    [64] JIN X, SUN Y, WU Q, et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon[J]. ACS Applied Materials and Interfaces, 2019, 11: 42385-42391.

    [66] Pralle M, Vineis C, Palsule C, et al. Ultra low light CMOS image sensors[C]//Proc. of SPIE, 2021, 11741: 117410E.

    WANG Bo, TANG Libin, ZHANG Yuping, DENG Gongrong, ZUO Wenbin, ZHAO Peng. Research Progress of Black Silicon Photoelectric Detection Materials and Devices[J]. Infrared Technology, 2022, 44(5): 437
    Download Citation