• Laser & Optoelectronics Progress
  • Vol. 55, Issue 9, 91005 (2018)
Mao Zhengchong and Chen Qiang*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.091005 Cite this Article Set citation alerts
    Mao Zhengchong, Chen Qiang. Recognition and Tracking of AGV Multi-Branch Path Based on PCA-LDA and SVM[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91005 Copy Citation Text show less
    References

    [1] Verma N K, Nama P, Kumar G, et al. Vision based object follower automated guided vehicle using compressive tracking and stereo-vision[C]∥2015 IEEE Bombay Section Symposium, September 10-11, 2015, Mumbai, India. New York: IEEE, 2016: 1-6.

    [2] Yu J, Chen Y, Ouyang L, et al. An image enhancement method for non-uniform illumination with illumination constraints for vision-guided AGV[C]∥2016 IEEE International Conference on Advanced Mechatronic Systems, November 30-December 3, 2016, Melbourne, VIC, Australia. New York: IEEE, 2017: 148-153.

    [3] Draganjac I, Mikli D, Kovai Z, et al. Decentralized control of multi-AGV systems in autonomous warehousing applications[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(4): 1433-1447.

    [4] Ye A, Zhu H, Xu Z, et al. A vision-based guidance method for autonomous guided vehicles[C]∥2012 IEEE International Conference on Mechatronics and Automation, August 5-8, 2012, Chengdu, China. New York: IEEE, 2012: 2025-2030.

    [5] Liu H Q. Research on path tracking of visual navigation AGV based on Bessel trajectory[J]. China Measurement & Test, 2017, 43(8): 113-118.

    [6] Wu X, Shen W L, Lou P H, et al. Robust feature recognition and precise path tracking for vision-guided AGV[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 48-56.

    [7] Zheng S H, Li W G, Liu W M, et al. The research of fast multi-path detection algorithm for visual AGV[J]. Electronic Design Engineering, 2016, 24(11): 177-180.

    [8] Yu J, Lou P H, Wu X, et al. Automated guided vehicle cross path recognition based on rough set and hierarchical support vector machine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1): 62-69.

    [9] Wang Z J, Yu Z J, Ma K, et al. An image filtering algorithm based on adaptive median and gradient inverse weight[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121001.

    [10] Yu Z J, Wang S B. Improved PCA-SIFT algorithm for matching stereo system [J]. Laser & Optoelectronics Progress, 2016, 53(3): 031501.

    [11] Wu J, Yang H. Linear regression-based efficient SVM learning for large-scale classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2357-2369.

    [12] Guo Z Z, Liu R, Gong C Q, et al. Study on improvement of gray wolf algorithm[J]. Application Research of Computers, 2017, 34(12): 3603-3606, 3610.

    [13] Guo K Y, Guo X L, Wang Y W. Analysis and strategy for parameter optimization methods of SVM[J]. Computer Measurement & Control, 2016, 24(6): 255-259.

    [14] Park J, Park Y, Kim S W. AGV parking system using artificial visual landmark[J]. International Conference on Control, Automation and Systems 2008, Oct. 14-17, 2008, Seoul, Korea. Seoul: Institute of Control, Robotics and Systems, 2008, 1579-1582.

    [15] Wang B X, Song B, Wang S A, et al. The research on visual navigation of AGV in outdoor environment[J]. Applied Mechanics and Materials, 2014, 536/537: 993-998.

    [16] Lu S P, Xu C, Zhong R Y. An active RFID tag-enabled locating approach with multipath effect elimination in AGV[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(3): 1333-1342.

    [17] Tang H, Liu Y H. A fully automatic calibration algorithm for a camera odometry system[J]. IEEE Sensors Journal, 2017, 17(13): 4208-4216.