• Acta Optica Sinica
  • Vol. 38, Issue 8, 0814001 (2018)
Jian Wang*, Zheqiang Zhong, Bin Zhang*, and Nianchun Sun
Author Affiliations
  • College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610064, China
  • show less
    DOI: 10.3788/AOS201838.0814001 Cite this Article Set citation alerts
    Jian Wang, Zheqiang Zhong, Bin Zhang, Nianchun Sun. Beam Smoothing Scheme for Multi-Color Laser Quad Based on a Combination of Hybrid Gratings[J]. Acta Optica Sinica, 2018, 38(8): 0814001 Copy Citation Text show less
    References

    [1] Fan D Y, Zhang X M. Laser fusion and high power laser: history and progress[J]. Physics, 39, 589-596(2010).

    [2] Schiavi A, Atzeni S, Marocchino A. Illumination stability for high-repetition-rate laser facilities in direct-drive inertial confinement fusion[J]. Europhysics Letters, 94, 35002(2011).

    [3] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [4] Wen P, Li Z L, Zhong Z Q et al. Study on propagation characteristics of laser quads in cylindrical hohlraum for indirect drive facility[J]. Acta Optica Sinica, 36, 0114001(2017).

    [5] Lindl J D, Amendt P, Berger R L et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004). http://www.tandfonline.com/servlet/linkout?suffix=CIT0002&dbid=16&doi=10.1080%2F09500340.2015.1075619&key=10.1063%2F1.1578638

    [6] Kato Y, Mima K, Miyanaga N et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 53, 1057-1060(1984).

    [7] Dixit S N, Lawson J K, Manes K R et al. Kinoform phase plates for focal plane irradiance profile control[J]. Optics Letters, 19, 417-419(1994). http://www.opticsinfobase.org/abstract.cfm?uri=ol-19-6-417

    [8] Néauport J, Ribeyre X, Daurios J et al. Design and optical characterization of a large continuous phase plate for laser integration line and laser megajoule facilities[J]. Applied Optics, 42, 2377-2382(2003).

    [9] Skupsky S, Short R W, Kessler T et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 66, 3456-3462(1989). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5085983

    [10] Hou P, Zhong Z Q, Zhang B. Analysis and optimization of radial smoothing based on optical Kerr effect for irradiation improvement[J]. Optics & Laser Technology, 85, 48-54(2016).

    [11] Zheng T R, Zhang Y, Geng Y C et al. Smoothing by spectral dispersion technology based on bundle multiple-frequency modulation[J]. Chinese Journal of Lasers, 44, 1205003(2017).

    [12] Haynam C A, Wegner P J, Auerbach J M et al. National Ignition Facility laser performance status[J]. Applied Optics, 46, 3276-3303(2007). http://www.ncbi.nlm.nih.gov/pubmed/17514286/

    [13] Temporal M, Canaud B, Garbett W J et al. Numerical analysis of the direct drive illumination uniformity for the Laser Mega Joule facility[J]. Physics of Plasmas, 21, 012710(2014). http://scitation.aip.org/content/aip/journal/pop/21/1/10.1063/1.4863460

    [14] Zhang R, Jia H, Tian X et al. Research of beam conditioning technologies using continuous phase plate, multi-FM smoothing by spectral dispersion and polarization smoothing[J]. Optics & Lasers in Engineering, 85, 38-47(2016).

    [15] Zhong Z Q, Zhang B. Beam smoothing characteristics of multi-central frequency and multi-color smoothing by spectral dispersion[J]. Applied Optics, 53, 2020-2025(2014).

    [16] Zhang R, Zhang X, Sui Z et al. Research on target uniform irradiation method using linearly modulated light and special grating dispersion[J]. Optics & Laser Technology, 43, 1073-1077(2011).

    [17] Wang J, Hou P C, Zhang B. A new scheme of spectral dispersion smoothing based on hybrid grating[J]. Acta Physica Sinica, 65, 204201(2016).

    [18] Wen P, Li Z L, Zhong Z Q et al. Parameters optimization for multi-color multi-central frequency smoothing by spectral dispersion[J]. Acta Optica Sinica, 35, 0614001(2015).

    [19] Rothenberg J E. Implementation of smoothing by spectral dispersion on Beamlet and NIF[J]. Proceedings of SPIE, 3492, 970-979(1999). http://spie.org/Publications/Proceedings/Paper/10.1117/12.354249

    [20] Zhou B J, Zhong Z Q, Zhang B. Influence of beam moving characteristics on smoothing effect of focal spot[J]. Acta Physica Sinica, 61, 214202(2012).

    [21] Zhong Z Q, Hou P C, Zhang B. A novel radial beam smoothing scheme based on optical Kerr effect[J]. Acta Physica Sinica, 65, 094207(2016).

    [22] Divol L, Berger R L, Meezan N B et al. Three-dimensional modeling of laser-plasma interaction: benchmarking our predictive modeling tools versus experiments[J]. Physics of Plasmas, 15, 085001(2008).

    [23] Peng Z T, Jing F, Liu L Q et al. Power spectra density estimation of quality of the laser beam passing through an self-focusing media[J]. Acta Physica Sinica, 52, 87-90(2005).

    Jian Wang, Zheqiang Zhong, Bin Zhang, Nianchun Sun. Beam Smoothing Scheme for Multi-Color Laser Quad Based on a Combination of Hybrid Gratings[J]. Acta Optica Sinica, 2018, 38(8): 0814001
    Download Citation