• Photonics Research
  • Vol. 8, Issue 5, 715 (2020)
Tianyue Hou1,†, Yi An1,†, Qi Chang1, Pengfei Ma1,3,*..., Jun Li1, Liangjin Huang1, Dong Zhi2, Jian Wu1, Rongtao Su1, Yanxing Ma1 and Pu Zhou1,4,*|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • 3e-mail: shandapengfei@126.com
  • 4e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.388551 Cite this Article Set citation alerts
    Tianyue Hou, Yi An, Qi Chang, Pengfei Ma, Jun Li, Liangjin Huang, Dong Zhi, Jian Wu, Rongtao Su, Yanxing Ma, Pu Zhou, "Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation," Photonics Res. 8, 715 (2020) Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [3] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photon., 7, 66-106(2015).

    [4] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, A. M. Weiner. Roadmap on structured light. J. Opt., 19, 013001(2017).

    [5] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [6] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [7] J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [8] Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [9] S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, M. Ritsch-Marte. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 14, 3792-3805(2006).

    [10] L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [11] M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express, 16, 4991-4999(2008).

    [12] M. Siler, P. Jakl, O. Brzobohaty, P. Zemanek. Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. Express, 20, 24304-24319(2012).

    [13] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

    [14] J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso. Laser ablation of silicon induced by a femtosecond optical vortex beam. Opt. Lett., 40, 4611-4614(2015).

    [15] S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Yu. Kulchin, S. Khonina, S. Kudryashov. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express, 25, 10214-10223(2017).

    [16] X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [17] C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte. What spatial light modulators can do for optical microscopy. Laser Photon. Rev., 5, 81-101(2011).

    [18] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon., 8, 200-227(2016).

    [19] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, F. Sciarrino. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001(2011).

    [20] E. Karimi, S. A. Schulz, I. D. Leon, V. Qassim, J. Upham, R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [21] X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [22] T. Y. Fan. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quant. Elect., 11, 567-577(2005).

    [23] J. R. Leger. Laser beam combining: theory and methods. Conference on Lasers and Electro-Optics, CThG1(2010).

    [24] G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammons, H. Injeyan, H. Komine, W. H. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, M. Wickham. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J. Sel. Top. Quantum Electron., 13, 460-472(2007).

    [25] P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J. Sel. Top. Quant. Elect., 15, 248-256(2009).

    [26] C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, T. Y. Fan. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt. Lett., 36, 2686-2688(2011).

    [27] E. Seise, A. Klenke, J. Limpert, A. Tünnermann. Coherent addition of fiber-amplified ultrashort laser pulses. Opt. Express, 18, 27827-27835(2010).

    [28] A. Flores, I. Dajani, R. Holten, T. Ehrenreich, B. Anderson. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers. Opt. Eng., 55, 096101(2016).

    [29] C. Peng, X. Liang, R. Liu, W. Li, R. Li. High-precision active synchronization control of high-power, tiled-aperture coherent beam combining. Opt. Lett., 42, 3960-3963(2017).

    [30] A. Brignon. Coherent Laser Beam Combining(2013).

    [31] J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu. Optical-vortex laser ablation. Opt. Express, 18, 2144-2151(2010).

    [32] N. A. Chaitanya, A. Aadhi, M. V. Jabir, G. K. Samanta. Frequency-doubling characteristics of high-power, ultrafast vortex beams. Opt. Lett., 40, 4269-4272(2015).

    [33] G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, A. F. Molisch, A. E. Willner. Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link. Optica, 2, 357-364(2015).

    [34] L. Wang, L. Wang, S. Zhu. Formation of optical vortices using coherent laser beam arrays. Opt. Commun., 282, 1088-1094(2009).

    [35] X. Chu, Q. Sun, J. Wang, P. Lü, W. Xie, X. Xu. Generating a Bessel-Gaussian beam for the application in optical engineering. Sci. Rep., 5, 18665(2015).

    [36] T. Hou, D. Zhi, R. Tao, Y. Ma, P. Zhou, Z. Liu. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology. Opt. Express, 26, 14945-14958(2018).

    [37] D. Zhi, R. Tao, P. Zhou, Y. Ma, W. Wu, X. Wang, L. Si. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence. Opt. Commun., 387, 157-165(2017).

    [38] Y. Yang, Y. Dong, C. Zhao, Y. Cai. Generation and propagation of an anomalous vortex beam. Opt. Lett., 38, 5418-5421(2013).

    [39] V. P. Aksenov, V. V. Dudorov, V. V. Kolosov. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere. Quantum Electron., 46, 726-732(2016).

    [40] V. P. Aksenov, V. V. Dudorov, G. A. Filimonov, V. V. Kolosov, V. Y. Venediktov. Vortex beams with zero orbital angular momentum and non-zero topological charge. Opt. Laser Technol., 104, 159-163(2018).

    [41] S. L. Lachinova, M. A. Vorontsov. Exotic laser beam engineering with coherent fiber-array systems. J. Opt., 15, 105501(2013).

    [42] V. P. Aksenov, V. V. Dudorov, V. V. Kolosov, M. E. Levitsky, T. D. Petukhov, A. P. Rostov. Generation of vortex and partially coherent laser beams based on fiber array coherent combining. Proc. SPIE, 10787, 107870M(2018).

    [43] D. Zhi, T. Hou, P. Ma, Y. Ma, P. Zhou, R. Tao, X. Wang, L. Si. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology. High Power Laser Sci. Eng., 7, e33(2019).

    [44] T. Hou, Y. Zhang, Q. Chang, P. Ma, R. Su, J. Wu, Y. Ma, P. Zhou. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane. Opt. Express, 27, 4046-4059(2019).

    [45] H. Tünnermann, A. Shirakawa. Deep reinforcement learning for coherent beam combining applications. Opt. Express, 27, 24223-24230(2019).

    [46] T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, P. Zhou. Deep-learning-based phase control method for tiled aperture coherent beam combining systems. High Power Laser Sci. Eng., 7, e59(2019).

    [47] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition(2014).

    [48] Y. An, L. Huang, J. Li, J. Leng, L. Yang, P. Zhou. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express, 27, 10127-10137(2019).

    [49] M. A. Vorontsov, V. P. Sivokon. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J. Opt. Soc. Am. A, 15, 2745-2758(1998).

    [50] R. Su, P. Zhou, X. Wang, H. Zhang, X. Xu. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt. Lett., 37, 3978-3980(2012).

    [51] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 88, 013601(2002).

    [52] S. Fu, C. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon. Res., 4, B1-B4(2016).

    CLP Journals

    [1] Hongxiang Chang, Jiachao Xi, Rongtao Su, Pengfei Ma, Yanxing Ma, Pu Zhou, "Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm," Chin. Opt. Lett. 18, 101403 (2020)

    Tianyue Hou, Yi An, Qi Chang, Pengfei Ma, Jun Li, Liangjin Huang, Dong Zhi, Jian Wu, Rongtao Su, Yanxing Ma, Pu Zhou, "Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation," Photonics Res. 8, 715 (2020)
    Download Citation