• Photonics Research
  • Vol. 8, Issue 5, 715 (2020)
Tianyue Hou1、†, Yi An1、†, Qi Chang1, Pengfei Ma1、3、*, Jun Li1, Liangjin Huang1, Dong Zhi2, Jian Wu1, Rongtao Su1, Yanxing Ma1, and Pu Zhou1、4、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
  • 3e-mail: shandapengfei@126.com
  • 4e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.388551 Cite this Article Set citation alerts
    Tianyue Hou, Yi An, Qi Chang, Pengfei Ma, Jun Li, Liangjin Huang, Dong Zhi, Jian Wu, Rongtao Su, Yanxing Ma, Pu Zhou. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 2020, 8(5): 715 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [3] A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, S. Ashrafi. Optical communications using orbital angular momentum beams. Adv. Opt. Photon., 7, 66-106(2015).

    [4] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, A. M. Weiner. Roadmap on structured light. J. Opt., 19, 013001(2017).

    [5] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [6] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [7] J. Wang, J. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [8] Y. Yan, G. Xie, M. P. Lavery, H. Huang, N. Ahmed, C. Bao, L. Li, Z. Zhao, A. F. Molisch, M. Tur, M. J. Padgett, A. E. Willner. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun., 5, 4876(2014).

    [9] S. Bernet, A. Jesacher, S. Furhapter, C. Maurer, M. Ritsch-Marte. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 14, 3792-3805(2006).

    [10] L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, K. Dholakia. Controlled rotation of optically trapped microscopic particles. Science, 292, 912-914(2001).

    [11] M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express, 16, 4991-4999(2008).

    [12] M. Siler, P. Jakl, O. Brzobohaty, P. Zemanek. Optical forces induced behavior of a particle in a non-diffracting vortex beam. Opt. Express, 20, 24304-24319(2012).

    [13] K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, T. Omatsu. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

    [14] J. J. Nivas, H. Shutong, K. K. Anoop, A. Rubano, R. Fittipaldi, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso. Laser ablation of silicon induced by a femtosecond optical vortex beam. Opt. Lett., 40, 4611-4614(2015).

    [15] S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Yu. Kulchin, S. Khonina, S. Kudryashov. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express, 25, 10214-10223(2017).

    [16] X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [17] C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte. What spatial light modulators can do for optical microscopy. Laser Photon. Rev., 5, 81-101(2011).

    [18] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon., 8, 200-227(2016).

    [19] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, F. Sciarrino. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt., 13, 064001(2011).

    [20] E. Karimi, S. A. Schulz, I. D. Leon, V. Qassim, J. Upham, R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [21] X. Cai, J. Wang, M. J. Strain, B. J. Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, S. Yu. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [22] T. Y. Fan. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quant. Elect., 11, 567-577(2005).

    [23] J. R. Leger. Laser beam combining: theory and methods. Conference on Lasers and Electro-Optics, CThG1(2010).

    [24] G. D. Goodno, C. P. Asman, J. Anderegg, S. Brosnan, E. C. Cheung, D. Hammons, H. Injeyan, H. Komine, W. H. Long, M. McClellan, S. J. McNaught, S. Redmond, R. Simpson, J. Sollee, M. Weber, S. B. Weiss, M. Wickham. Brightness-scaling potential of actively phase-locked solid-state laser arrays. IEEE J. Sel. Top. Quantum Electron., 13, 460-472(2007).

    [25] P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application. IEEE J. Sel. Top. Quant. Elect., 15, 248-256(2009).

    [26] C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, T. Y. Fan. Coherent combining of a 4 kW, eight-element fiber amplifier array. Opt. Lett., 36, 2686-2688(2011).

    [27] E. Seise, A. Klenke, J. Limpert, A. Tünnermann. Coherent addition of fiber-amplified ultrashort laser pulses. Opt. Express, 18, 27827-27835(2010).

    [28] A. Flores, I. Dajani, R. Holten, T. Ehrenreich, B. Anderson. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers. Opt. Eng., 55, 096101(2016).

    [29] C. Peng, X. Liang, R. Liu, W. Li, R. Li. High-precision active synchronization control of high-power, tiled-aperture coherent beam combining. Opt. Lett., 42, 3960-3963(2017).

    [30] A. Brignon. Coherent Laser Beam Combining(2013).

    [31] J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, T. Omatsu. Optical-vortex laser ablation. Opt. Express, 18, 2144-2151(2010).

    [32] N. A. Chaitanya, A. Aadhi, M. V. Jabir, G. K. Samanta. Frequency-doubling characteristics of high-power, ultrafast vortex beams. Opt. Lett., 40, 4269-4272(2015).

    [33] G. Xie, L. Li, Y. Ren, H. Huang, Y. Yan, N. Ahmed, Z. Zhao, M. P. J. Lavery, N. Ashrafi, S. Ashrafi, R. Bock, M. Tur, A. F. Molisch, A. E. Willner. Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link. Optica, 2, 357-364(2015).

    [34] L. Wang, L. Wang, S. Zhu. Formation of optical vortices using coherent laser beam arrays. Opt. Commun., 282, 1088-1094(2009).

    [35] X. Chu, Q. Sun, J. Wang, P. Lü, W. Xie, X. Xu. Generating a Bessel-Gaussian beam for the application in optical engineering. Sci. Rep., 5, 18665(2015).

    [36] T. Hou, D. Zhi, R. Tao, Y. Ma, P. Zhou, Z. Liu. Spatially-distributed orbital angular momentum beam array generation based on greedy algorithms and coherent combining technology. Opt. Express, 26, 14945-14958(2018).

    [37] D. Zhi, R. Tao, P. Zhou, Y. Ma, W. Wu, X. Wang, L. Si. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence. Opt. Commun., 387, 157-165(2017).

    [38] Y. Yang, Y. Dong, C. Zhao, Y. Cai. Generation and propagation of an anomalous vortex beam. Opt. Lett., 38, 5418-5421(2013).

    [39] V. P. Aksenov, V. V. Dudorov, V. V. Kolosov. Properties of vortex beams formed by an array of fibre lasers and their propagation in a turbulent atmosphere. Quantum Electron., 46, 726-732(2016).

    [40] V. P. Aksenov, V. V. Dudorov, G. A. Filimonov, V. V. Kolosov, V. Y. Venediktov. Vortex beams with zero orbital angular momentum and non-zero topological charge. Opt. Laser Technol., 104, 159-163(2018).

    [41] S. L. Lachinova, M. A. Vorontsov. Exotic laser beam engineering with coherent fiber-array systems. J. Opt., 15, 105501(2013).

    [42] V. P. Aksenov, V. V. Dudorov, V. V. Kolosov, M. E. Levitsky, T. D. Petukhov, A. P. Rostov. Generation of vortex and partially coherent laser beams based on fiber array coherent combining. Proc. SPIE, 10787, 107870M(2018).

    [43] D. Zhi, T. Hou, P. Ma, Y. Ma, P. Zhou, R. Tao, X. Wang, L. Si. Comprehensive investigation on producing high-power orbital angular momentum beams by coherent combining technology. High Power Laser Sci. Eng., 7, e33(2019).

    [44] T. Hou, Y. Zhang, Q. Chang, P. Ma, R. Su, J. Wu, Y. Ma, P. Zhou. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane. Opt. Express, 27, 4046-4059(2019).

    [45] H. Tünnermann, A. Shirakawa. Deep reinforcement learning for coherent beam combining applications. Opt. Express, 27, 24223-24230(2019).

    [46] T. Hou, Y. An, Q. Chang, P. Ma, J. Li, D. Zhi, L. Huang, R. Su, J. Wu, Y. Ma, P. Zhou. Deep-learning-based phase control method for tiled aperture coherent beam combining systems. High Power Laser Sci. Eng., 7, e59(2019).

    [47] K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition(2014).

    [48] Y. An, L. Huang, J. Li, J. Leng, L. Yang, P. Zhou. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express, 27, 10127-10137(2019).

    [49] M. A. Vorontsov, V. P. Sivokon. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. J. Opt. Soc. Am. A, 15, 2745-2758(1998).

    [50] R. Su, P. Zhou, X. Wang, H. Zhang, X. Xu. Active coherent beam combining of a five-element, 800 W nanosecond fiber amplifier array. Opt. Lett., 37, 3978-3980(2012).

    [51] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 88, 013601(2002).

    [52] S. Fu, C. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon. Res., 4, B1-B4(2016).

    CLP Journals

    [1] Hongxiang Chang, Jiachao Xi, Rongtao Su, Pengfei Ma, Yanxing Ma, Pu Zhou. Efficient phase-locking of 60 fiber lasers by stochastic parallel gradient descent algorithm[J]. Chinese Optics Letters, 2020, 18(10): 101403

    Tianyue Hou, Yi An, Qi Chang, Pengfei Ma, Jun Li, Liangjin Huang, Dong Zhi, Jian Wu, Rongtao Su, Yanxing Ma, Pu Zhou. Deep-learning-assisted, two-stage phase control method for high-power mode-programmable orbital angular momentum beam generation[J]. Photonics Research, 2020, 8(5): 715
    Download Citation