• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 10501 (2018)
Shi Xin, Sun Cheng, and Wang Xiaoqiu*
Author Affiliations
  • College of Physical Science and Technology, Dalian University, Dalian, Liaoning 116622, China
  • show less
    DOI: 10.3788/LOP55.010501 Cite this Article Set citation alerts
    Shi Xin, Sun Cheng, Wang Xiaoqiu. One-Dimensional Diffraction Grating Structure for Rear Reflection Surface of Thin Film Silicon Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(1): 10501 Copy Citation Text show less
    References

    [1] Zhang Z J, Wang T T, Zeng H P. Research progress on thin film solar cells[J]. Electronic Components and Materials, 29, 75-78(2010).

    [2] Shen H J, Lu H D, Cheng X Z. Back reflectors of thin-film silicon solar cells consisting of one-dimensional diffraction gratings and one-dimensional photonic crystal[J]. Chinese Journal of Luminescence, 33, 633-639(2012).

    [3] Müller J, Rech B, Springer J et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 77, 917-930(2004). http://www.sciencedirect.com/science/article/pii/S0038092X04000647

    [4] Macdonald D H, Cuevas A, Kerr M J et al. Texturing industrial multicrystalline silicon solar cells[J]. Solar Energy, 76, 277-283(2004). http://www.sciencedirect.com/science/article/pii/S0038092X03003128

    [5] Dou X J, Min C J, Zhang Y Q et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 36, 1026004(2016).

    [6] Shan H Y, Zu S, Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 54, 030002(2017).

    [7] Li T, Chen J, Zhu S N. Manipulating surface plasmon propagation: from beam modulation to near-field holography[J]. Laser & Optoelectronics Progress, 54, 050002(2017).

    [8] Wang Y, Wang X, Li L W. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 52, 092401(2015).

    [9] Wang Z X, Sun C, Wang X Q. Modification of front surface antireflection of silicon solar cells with composite metallic nanoparticle arrays[J]. Plasmonics, 12, 589-596(2017). http://link.springer.com/10.1007/s11468-016-0302-6

    [10] Sun C, Wang Z X, Wang X Q et al. A surface design for enhancement of light trapping efficiencies in thin film silicon solar cells[J]. Plasmonics, 11, 1003-1010(2016). http://link.springer.com/article/10.1007/s11468-015-0135-8

    [11] Sun C, Wang X Q. Efficient light trapping structures of thin film silicon solar cells based on silver nanoparticle arrays[J]. Plasmonics, 10, 1307-1314(2015). http://link.springer.com/article/10.1007/s11468-015-9934-1

    [12] Sun C, Su J, Wang X Q. A design of thin film silicon solar cells based on silver nanoparticle arrays[J]. Plasmonics, 10, 633-641(2015). http://link.springer.com/article/10.1007/s11468-014-9849-2

    [13] Ding D, Yang S E, Chen Y S et al. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays[J]. Acta Physica Sinica, 64, 248801(2015).

    [14] Catchpole K R, Polman A. Design principles for particle plasmon enhanced solar cells[J]. Applied Physics Letters, 93, 191113(2008). http://scitation.aip.org/content/aip/journal/apl/93/19/10.1063/1.3021072

    [15] Hägglund C, Zäch M, Petersson G et al. Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons[J]. Applied Physics Letters, 92, 053110(2008). http://scitation.aip.org/content/aip/journal/apl/92/5/10.1063/1.2840676

    [16] Pillai S, Catchpole K R, Trupke T et al. Surface plasmon enhanced silicon solar cells[J]. Journal of Applied Physics, 101, 093105(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4943557

    [17] Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes[J]. Optics Express, 17, 10195-10205(2009). http://www.opticsinfobase.org/abstract.cfm?id=180351

    [18] Rockstuhl C, Lederer F. Photon management by metallic nanodiscs in thin film solar cells[J]. Applied Physics Letters, 94, 213102(2009). http://scitation.aip.org/content/aip/journal/apl/94/21/10.1063/1.3141402

    [19] Zhu J, Yu Z, Jeong S et al. Nanostructured light management for advanced photovoltaics[M]. New York: Springer, 363(2011).

    [20] Diukman I, Orenstein M. How front side plasmonic nanostructures enhance solar cell efficiency[J]. Solar Energy Materials and Solar Cells, 95, 2628-2631(2011). http://www.sciencedirect.com/science/article/pii/S0927024811002765

    [21] Akimov Y A, Ostrikov K, Li E P. Surface plasmon enhancement of optical absorption in thin-film silicon solar cells[J]. Plasmonics, 4, 107-113(2009). http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s11468-009-9080-8

    [22] Madzharov D, Dewan R, Knipp D. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells[J]. Optics Express, 19, A95-A107(2011). http://www.ncbi.nlm.nih.gov/pubmed/21445224

    CLP Journals

    [1] Liu Yanzhen, Cui Yanxia. MAPbI3 Perovskite Nanowire Photodetectors[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102301

    [2] Li Guangji, Lu Jian, Wang Chengmin, Zhang Hongchao, Zhou Dayong. Simulation of Laser Irradiation of One-Dimensional In0.3Ga0.7As Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101601

    Shi Xin, Sun Cheng, Wang Xiaoqiu. One-Dimensional Diffraction Grating Structure for Rear Reflection Surface of Thin Film Silicon Solar Cells[J]. Laser & Optoelectronics Progress, 2018, 55(1): 10501
    Download Citation