• Laser & Optoelectronics Progress
  • Vol. 57, Issue 13, 131204 (2020)
Weifeng Du1、*, Yongzhi Liu2, Wenjie Gao1, and Xiongchao Hu1
Author Affiliations
  • 1Optical Navigation and Detection Division, Shanghai Aerospace Control Technology Institute, Shanghai 200233, China
  • 2Military Representative Office Rocket Army Equipment Department in Tianjin Area, Tianjin 300308, China
  • show less
    DOI: 10.3788/LOP57.131204 Cite this Article Set citation alerts
    Weifeng Du, Yongzhi Liu, Wenjie Gao, Xiongchao Hu. Analysis of Passive Athermalization Structure Design and Integrated Opto-Mechanical-Thermal of Zoom Lens of Photoelectric Countermeasure Platform[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204 Copy Citation Text show less
    Schematic diagram of zoom optical system. (a) EFFL is 19 mm; (b) EFFL is 35 mm; (c) EFFL is 50 mm; (d) EFFL is 100 mm;
    Fig. 1. Schematic diagram of zoom optical system. (a) EFFL is 19 mm; (b) EFFL is 35 mm; (c) EFFL is 50 mm; (d) EFFL is 100 mm;
    MTF curves for multiple focal length configuration. (a) EFFL is 19 mm; (b) EFFL is 35 mm; (c) EFFL is 50 mm; (d) EFFL is 100 mm
    Fig. 2. MTF curves for multiple focal length configuration. (a) EFFL is 19 mm; (b) EFFL is 35 mm; (c) EFFL is 50 mm; (d) EFFL is 100 mm
    Opto-mechanical structure of zoom lens
    Fig. 3. Opto-mechanical structure of zoom lens
    Finite element model of zoom lens
    Fig. 4. Finite element model of zoom lens
    Rigid body displacement cloud diagram of the zoom lens at temperature of -20 ℃. (a) Front fixed group; (b) zoom group; (c) compensation group; (d) posterior fixation group; (e) machine
    Fig. 5. Rigid body displacement cloud diagram of the zoom lens at temperature of -20 ℃. (a) Front fixed group; (b) zoom group; (c) compensation group; (d) posterior fixation group; (e) machine
    Initial structural design of rear fixed component
    Fig. 6. Initial structural design of rear fixed component
    Fixed group structure design with flexible pressure ring structure
    Fig. 7. Fixed group structure design with flexible pressure ring structure
    Key structure parameters of flexible pressure ring. (a) Pressure ring;(b) space ring
    Fig. 8. Key structure parameters of flexible pressure ring. (a) Pressure ring;(b) space ring
    Finite element model of rear fixed component adopted flexible pressure ring
    Fig. 9. Finite element model of rear fixed component adopted flexible pressure ring
    Displacement cloud diagram of real fixed group athermalization with flexible pressure ring
    Fig. 10. Displacement cloud diagram of real fixed group athermalization with flexible pressure ring
    Variation of thermoelastic axial rigid body displacement with temperature
    Fig. 11. Variation of thermoelastic axial rigid body displacement with temperature
    Optical MTF curve of zoom lens. (a) Temperature is -20 ℃, EFFL is 99 mm; (b) temperature is 50 ℃, EFFL is 99 mm; (c) temperature is -20 ℃, EFFL is 50 mm; (d) temperature is 50 ℃, EFFL is 50 mm; (e) temperature is -20 ℃, EFFL is 19 mm; (f) temperature is 50 ℃, EFFL is 19 mm
    Fig. 12. Optical MTF curve of zoom lens. (a) Temperature is -20 ℃, EFFL is 99 mm; (b) temperature is 50 ℃, EFFL is 99 mm; (c) temperature is -20 ℃, EFFL is 50 mm; (d) temperature is 50 ℃, EFFL is 50 mm; (e) temperature is -20 ℃, EFFL is 19 mm; (f) temperature is 50 ℃, EFFL is 19 mm
    Curve of wavefront difference with temperature. (a) Curve of PV with temperature; (b) curve of RMS with temperature
    Fig. 13. Curve of wavefront difference with temperature. (a) Curve of PV with temperature; (b) curve of RMS with temperature
    Experimental platform for reliability of optical equipment temperature stress
    Fig. 14. Experimental platform for reliability of optical equipment temperature stress
    Image of resolution board. (a) 20 ℃; (b) -20 ℃; (b) 50 ℃
    Fig. 15. Image of resolution board. (a) 20 ℃; (b) -20 ℃; (b) 50 ℃
    MaterialElastic modulus /MPaDensity /(10-6 kg·mm-3)Poisson's ratioCoefficient oflinear expansion /(10-6 ℃)
    Titanium alloy114000.004.400.298.90
    RTV701.001.280.47236.00
    ZF5253730.005.530.258.90
    QK763550.002.390.269.30
    LAK984340.004.020.297.60
    ZK989960.003.750.287.20
    ZF652350.004.770.259.20
    ZF5058990.003.970.258.70
    H-LAK388730.003.870.297.90
    ZF7L55000.004.970.248.90
    Table 1. Material parameters of the lens
    OrderPolynomialPhysicalmeaningDiagramform
    11migration
    2ρcos θX tilt
    3ρsin θY tilt
    42ρ2-1defocus
    5ρ2cos 2θ0° or 90° astigmatism
    6ρ2sin 2θ±45° astigmatism
    7(3ρ3-2ρ)cos θX coma
    Table 2. Correspondence between Zernike polynomial and Sediel aberration
    Serial numberT1T2T3R1R2R3
    15.524×10-77.332×10-73.752×10-45.770×10-91.162×10-87.992×10-8
    22.157×10-74.826×10-75.523×10-56.627×10-94.157×10-96.604×10-8
    36.687×10-75.542×10-77.775×10-54.423×10-95.514×10-94.607×10-8
    ……
    228.814×10-67.775×10-67.154×10-31.283×10-82.176×10-91.451×10-9
    236.523×10-63.351×10-55.183×10-35.073×10-94.518×10-92.951×10-9
    247.704×10-64.218×10-65.172×10-39.153×10-91.357×10-99.843×10-8
    254.056×10-66.450×10-66.107×10-38.423×10-91.543×10-94.862×10-8
    Table 3. Variation of rigid body displacement / rotation of telephoto zoom lens
    MaterialElastic modulus /MPaDensity /10-6 (kg·mm-3)Poisson's ratioCoefficient of linearexpansion /10-6
    Beryllium copper1320008.420.3316.88
    SUS3061870008.130.3123.70
    Table 4. Material parameters of the flexible pressure ring of the rear fixed component
    SerialnumberFirst lensSecond lensThird lens
    First surfaceSecond surfaceFirst surfaceSecond surfaceFirst surfaceSecond surface
    1-7.08×10-4-6.93×10-4-3.11×10-4-3.08×10-44.62×10-4-3.79×10-4
    25.68×10-43.16×10-42.93×10-44.28×10-4-1.84×10-3-2.64×10-3
    3-7.92×10-4-8.31×10-4-0.93×10-3-8.99×10-43.99×10-39.13×10-4
    4-2.27×10-3-3.68×10-34.47×10-48.52×10-4-8.87×10-61.08×10-5
    5-7.22×10-4-5.44×10-47.78×10-56.92×10-41.81×10-62.53×10-6
    66.99×10-43.59×10-4-5.19×10-5-3.15×10-5-1.01×10-61.18×10-6
    74.42×10-34.40×10-31.49×10-43.44×10-4-1.51×10-5-5.61 ×10-5
    81.09×10-39.93×10-4-4.00×10-5-3.46×10-5-5.83×10-5-4.68×10-5
    97.62×10-48.52×10-46.47×10-66.19×10-6-3.23×10-5-4.03×10-5
    Table 5. Zernike coefficient of each mirror in the anterior fixation group at temperature of -20 ℃
    SerialnumberFirst lensSecond lensThird lens
    Second surfaceFirst surfaceSecond surfaceSecond surfaceFirst surfaceSecond surface
    1-0.18×10-3-0.26×10-3-6.23×10-4-1.09×10-31.40×10-52.16×10-7
    2-2.20×10-44.37×10-5-8.73×10-4-4.77×10-4-2.29×10-3-3.33×10-4
    35.62×10-57.10×10-5-8.88×10-42.24×10-3-8.25×10-5-4.47×10-6
    4-3.31×10-3-1.89×10-3-6.62×10-64.47×10-6-2.29×10-4-1.06×10-5
    52.57×10-68.36×10-5-6.66×10-5-7.80×10-4-8.88×10-7-6.63×10-7
    6-2.52×10-5-2.76×10-5-2.77×10-5-4.42×10-53.77×10-5-1.52×10-6
    7-8.62×10-3-8.47×10-3-3.97×10-6-4.43×10-67.96×10-5-1.47×10-6
    8-3.33×10-3-4.82×10-42.64×10-51.58×10-55.51×10-75.39×10-7
    95.97×10-41.62×10-4-7.64×10-6-1.27×10-6-7.04×10-7-2.28×10-7
    Table 6. Zernike coefficient of each mirror in the anterior fixation group at temperature of 50 ℃
    Seidel coefficientZernike polynomialValue (-20 ℃)Value (50 ℃)
    apiston2Z1-Z4+Z91+4ε2+ε4(1-ε2)2-5.70×10-3-6.33×10-3
    atilt_x2Z2(1+ε2)12-2Z7(1+ε2+ε4)(1-ε2)[(1+ε2)(1+4ε2+ε4)]121.08×10-3-8.53×10-4
    atilt_y2Z2(1+ε2)12-2Z8(1+ε2+ε4)(1-ε2)[(1+ε2)(1+4ε2+ε4)]12-1.54×10-4-1.00×10-3
    adefocus2[2Z4/(1-ε2)-6Z9(1+ε2)/(1-ε2)2]5.79×10-31.72×10-3
    asa12Z9/(1-ε2)22.82×10-32.21×10-3
    acoma_x6(1+ξ2)Z7(1-ξ2)(1+ξ2)(1+4ξ2+ξ4)6.68×10-45.36×10-4
    acoma_y6(1+ξ2)Z8(1-ξ2)(1+ξ2)(1+4ξ2+ξ4)7.59×10-45.18×10-4
    Table 7. Seidel aberration coefficient at temperature load of -20 ℃ and 50 ℃
    Weifeng Du, Yongzhi Liu, Wenjie Gao, Xiongchao Hu. Analysis of Passive Athermalization Structure Design and Integrated Opto-Mechanical-Thermal of Zoom Lens of Photoelectric Countermeasure Platform[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204
    Download Citation