• Photonics Research
  • Vol. 10, Issue 3, 662 (2022)
Zijie Wang, Xiaobei Zhang*, Qi Zhang, Yiqi Chen, Yong Yang, Yang Yu, Yang Wang, Yanhua Dong, Yi Huang, and Tingyun Wang
Author Affiliations
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.1364/PRJ.450535 Cite this Article Set citation alerts
    Zijie Wang, Xiaobei Zhang, Qi Zhang, Yiqi Chen, Yong Yang, Yang Yu, Yang Wang, Yanhua Dong, Yi Huang, Tingyun Wang. Monitoring and identifying pendant droplets in microbottle resonators[J]. Photonics Research, 2022, 10(3): 662 Copy Citation Text show less
    References

    [1] P. J. Galley, G. M. Hieftje. Technique for producing capillaries with reproducible orifice diameters for uniform droplet generation. Appl. Spectrosc., 46, 1460-1463(1992).

    [2] Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip, 4, 292-298(2004).

    [3] S. Daniel, M. K. Chaudhury, J. C. Chen. Fast drop movements resulting from the phase change on a gradient surface. Science, 291, 633-636(2001).

    [4] E. Preter, R. A. Katims, V. Artel, C. N. Sukenik, D. Donlagic, A. Zadok. Monitoring and analysis of pendant droplets evaporation using bare and monolayer-coated optical fiber facets. Opt. Mater. Express, 4, 903-915(2014).

    [5] Q. M. Lv, Y. C. Wu, C. Li, X. C. Wu, L. H. Chen, K. F. Cen. Surface tension and viscosity measurement of oscillating droplet using rainbow refractometry. Opt. Lett., 45, 6687-6690(2020).

    [6] X. G. Li, R. X. Wang, H. X. Shi, B. H. Song. Effective surface tension of liquid marbles using controllable nanoparticle monolayers. Appl. Phys. Lett., 113, 101602(2018).

    [7] A. Giorgini, S. Avino, P. Malara, P. D. Natale, G. Gagliardi. Opto-mechanical oscillator in a nanoliter droplet. Opt. Lett., 43, 3473-3477(2018).

    [8] R. Lee, P. Zhang, Y. Xu, S. Jung. Radiation pressure-induced nonlinearity in a micro-droplet. Opt. Express, 28, 12675-12682(2020).

    [9] S. Maayani, T. Carmon. Droplet Raman laser coupled to a standard fiber. Photon. Res., 7, 1188-1192(2019).

    [10] D. D. Ambrosio, M. Capezzuto, S. Avino, P. Malara, A. Giorgini, P. D. Natale, G. Gagliardi. Light pressure in droplet micro-resonators excited by free-space scattering. Opt. Lett., 46, 3111-3114(2021).

    [11] S. Maayani, L. L. Martin, S. Kaminski, T. Carmom. Cavity optocapillaries. Optica, 3, 552-555(2015).

    [12] A. Jonas, Y. Karadag, M. Mestre, A. Kiraz. Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides. J. Opt. Soc. Am. B, 29, 3240-3247(2012).

    [13] M. Ivanov, K. Chang, I. Galinskiy, B. Mehlig, D. Hanstorp. Optical manipulation for studies of collisional dynamics of micron-sized droplets under gravity. Opt. Express, 25, 1391-1404(2017).

    [14] S. Kaminske, L. L. Martin, T. Carmom. Tweezers controlled resonator. Opt. Express, 23, 28914-28919(2015).

    [15] S. Zhu, Y. Liu, L. Shi, X. Xu, X. Zhang. Extinction ratio and resonant wavelength tuning using three dimensions of silica microresonators. Photon. Res., 4, 191-196(2016).

    [16] H. Wan, J. Chen, C. Wan, Q. Zhou, J. Wang, Z. Zhang. Optofluidic microcapillary biosensor for label-free, low glucose concentration detection. Biomed. Opt. Express, 10, 3929-3937(2019).

    [17] T. Hamidfar, K. V. Tokmakov, B. J. Mangan, R. S. Windeler, A. V. Dmitriev, D. L. P. Vitullo, P. Bianucci, M. Sumetsky. Localization of light in an optical microcapillary introduced by a droplet. Optica, 5, 382-388(2018).

    [18] K. Han, J. H. Kim, G. Bahl. High-throughput sensing of freely flowing particles with optomechanofluidics. Optica, 3, 585-591(2016).

    [19] F. Xie, N. Yao, W. Fang, H. Wang, F. Gu, S. Zhuang. Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators. Photon. Res., 5, B29-B33(2017).

    [20] Y. Louyer, D. Mechede, A. Rauschenbeutel. Tunable whispering gallery mode resonators for cavity quantum electrodynamics. Phys. Rev. A, 72, 2409-2413(2005).

    [21] H. Y. Li, B. Sun, Y. G. Yuan, J. Yang. Guanidine derivative polymer coated microbubble resonator for high sensitivity detection of CO2 gas concentration. Opt. Express, 27, 1991-2000(2019).

    [22] Z. D. Peng, C. Q. Yu, H. L. Ren, C. L. Zou, G. C. Guo, C. H. Dong. Gas identification in high-Q microbubble resonators. Opt. Lett., 45, 4440-4443(2020).

    [23] F. Y. Hou, X. B. Zhang, L. Yang, W. Sun, Y. Yang, Y. H. Dong, Y. Huang, T. Y. Wang. Magnetic fluid infiltrated microbottle resonator sensor with axial confined mode. IEEE Photon. J., 12, 6802709(2020).

    [24] L. Hao, X. D. Fan. Characterization of sensing capability of optofluidic ring resonator biosensors. Appl. Phys. Lett., 97, 011105(2010).

    [25] Z. H. Guo, Q. J. Liu, C. G. Zhu, B. W. Wang, Y. Zhou, X. Wu. Ultra-sensitive biomolecular detection by external referencing optofluidic microbubble resonators. Opt. Express, 27, 12424-12435(2019).

    [26] J. S. Pan, B. Zhang, Z. Y. Liu, J. X. Zhao, Y. H. Feng, L. Wan, Z. H. Li. Microbubble resonators combined with digital optical frequency comb for high-precision air-coupled ultrasound detectors. Photon. Res., 8, 303-310(2020).

    [27] J. M. Ward, Y. Yang, F. C. Lei, X. C. Yu, Y. F. Xiao, S. N. Chormaic. Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica, 5, 674-677(2018).

    [28] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res., 6, A23-A30(2018).

    [29] D. Q. Yang, F. Gao, Q. T. Cao, C. Wang, Y. F. Ji, Y. F. Xiao. Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities. Photon. Res., 6, 99-108(2018).

    [30] D. Q. Yang, A. Q. Wang, J. H. Chen, X. C. Yu, C. W. Lan, Y. F. Ji, Y. F. Xiao. Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photon. Res., 8, 497-502(2020).

    [31] D. Q. Yang, J. H. Chen, Q. T. Cao, B. Duan, H. J. Chen, X. C. Yu, Y. F. Xiao. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. Light Sci. Appl., 10, 128(2021).

    [32] Z. J. Wang, X. B. Zhang, S. C. Zhao, Y. Yu, H. Sun, Y. Yang, Y. H. Dong, Y. Huang, T. Y. Wang. High sensitivity flow rate sensor enabled by higher order modes of packaged microbottle resonator. IEEE Photon. Technol. Lett., 33, 599-603(2021).

    [33] Z. M. Chen, Z. H. Guo, X. Mu, Q. Li, X. Wu, H. Y. Fu. Packaged microbubble resonator optofluidic flow rate sensor based on Bernoulli Effect. Opt. Express, 27, 36932-36940(2019).

    [34] T. Loppolo, U. K. Ayaz, M. V. Otugen. High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres. J. Appl. Phys., 105, 013535(2009).

    [35] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium(1969).

    [36] M. E. Gurtin. The Linear Theory of Elasticity(1973).

    [37] B. T. Cao. Solutions of Navier equations and their representation structure. Adv. Appl. Math., 43, 331-374(2009).

    [38] J. M. Ward, Y. Yang, S. N. Chormaic. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Sci. Rep., 6, 25152(2015).

    Zijie Wang, Xiaobei Zhang, Qi Zhang, Yiqi Chen, Yong Yang, Yang Yu, Yang Wang, Yanhua Dong, Yi Huang, Tingyun Wang. Monitoring and identifying pendant droplets in microbottle resonators[J]. Photonics Research, 2022, 10(3): 662
    Download Citation