• Photonics Research
  • Vol. 7, Issue 3, 351 (2019)
Xiaodong Qiu1, Zijing Wang1, Xiaotong Hou1, Xuegong Yu1、2、*, and Deren Yang1、3、*
Author Affiliations
  • 1State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 2e-mail: yuxuegong@zju.edu.cn
  • 3e-mail: mseyang@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000351 Cite this Article Set citation alerts
    Xiaodong Qiu, Zijing Wang, Xiaotong Hou, Xuegong Yu, Deren Yang. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3): 351 Copy Citation Text show less
    References

    [1] T. Yu, F. Wang, Y. Xu, L. Ma, X. Pi, D. Yang. Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv. Mater., 28, 4912-4919(2016).

    [2] X. Wang, Z. Cheng, K. Xu, H. K. Tsang, J.-B. Xu. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics, 7, 888-891(2013).

    [3] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping. Adv. Opt. Mater., 6, 1700638(2018).

    [4] Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, J. C. Campbell. Microstructured silicon photodetector. Appl. Phys. Lett., 89, 033506(2006).

    [5] M. Casalino, L. Sirleto, L. Moretti, M. Gioffrè, G. Coppola, I. Rendina. Silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 m: fabrication and characterization. Appl. Phys. Lett., 92, 251104(2008).

    [6] D.-S. Tsai, C.-A. Lin, W.-C. Lien, H.-C. Chang, Y.-L. Wang, J.-H. He. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano, 5, 7748-7753(2011).

    [7] X. Li, J. Carey, J. Sickler, M. Pralle, C. Palsule, C. Vineis. Silicon photodiodes with high photoconductive gain at room temperature. Opt. Express., 20, 5518-5523(2012).

    [8] Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, J. B. Xu. High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode. Adv. Opt. Mater., 3, 1207-1214(2015).

    [9] J. F. Reintjes, J. C. McGroddy. Indirect two-photon transitions in Si at 1.06  μm. Phys. Rev. Lett., 30, 901-903(1973).

    [10] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, M. Asghari. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength. Appl. Phys. Lett., 80, 416-418(2002).

    [11] A. R. Cowan, G. W. Rieger, J. F. Young. Nonlinear transmission of 1.5  μm pulses through single-mode silicon-on-insulator waveguide structures. Opt. Express, 12, 1611-1621(2004).

    [12] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82, 2954-2956(2003).

    [13] H. Chen, X. S. Luo, A. W. Poon. Cavity-enhanced photocurrent generation by 1.55  μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator. Appl. Phys. Lett., 95, 171111(2009).

    [14] T. Baehr-Jones, M. Hochberg, A. Scherer. Photodetection in silicon beyond the band edge with surface states. Opt. Express, 16, 1659-1668(2008).

    [15] M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, T. M. Lyszczarz. CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band. IEEE Photon. Technol. Lett., 19, 152-154(2007).

    [16] A. Akbari, P. Berini. Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett., 95, 021104(2009).

    [17] S. Y. Zhu, G. Q. Lo, M. B. Yu, D. L. Kwong. Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection. Appl. Phys. Lett., 92, 081103(2008).

    [18] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffre, I. Rendina, G. Coppola. Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl. Phys. Lett., 96, 241112(2010).

    [19] A. P. Knights, J. D. B. Bradley, S. H. Gou, P. E. Jessop. Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response. J. Vac. Sci. Technol. A, 24, 783-786(2006).

    [20] J. Bradley, P. Jessop, A. Knights. Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550  nm. Appl. Phys. Lett., 86, 241103(2005).

    [21] J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, T. Buonassisi. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat. Commun., 5, 3011(2014).

    [22] L. Shen, Y. Zhang, Y. Bai, X. Zheng, Q. Wang, J. Huang. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain. Nanoscale, 8, 12990-12997(2016).

    [23] Z. Guo, S. Park, J. Yoon, I. Shin. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev., 43, 16-29(2014).

    [24] A. Armin, R. D. Jansen-van Vuuren, N. Kopidakis, P. L. Burn, P. Meredith. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes. Nat. Commun., 6, 6343(2015).

    [25] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, N. J. Halas. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun., 4, 1643(2013).

    [26] R. Chen, B. Fan, M. Pan, Q. Cheng, C. Chen. Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation. Mater. Lett., 163, 90-93(2016).

    [27] E. García-Hemme, R. García-Hernansanz, J. Olea, D. Pastor, A. del Prado, I. Mártil, G. González-Díaz. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector. Appl. Phys. Lett., 104, 211105(2014).

    [28] Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm, W. Skorupa. Room-temperature short-wavelength infrared Si photodetector. Sci. Rep., 7, 43688(2017).

    [29] C. B. Simmons, A. J. Akey, J. P. Mailoa, D. Recht, M. J. Aziz, T. Buonassisi. Enhancing the infrared photoresponse of silicon by controlling the fermi level location within an impurity band. Adv. Funct. Mater., 24, 2852-2858(2014).

    [30] E. Pérez, H. Castán, H. García, S. Dueñas, L. Bailón, D. Montero, R. García-Hernansanz, E. García-Hemme, J. Olea, G. González-Díaz. Energy levels distribution in supersaturated silicon with titanium for photovoltaic applications. Appl. Phys. Lett., 106, 022105(2015).

    [31] E. Mazur. Black silicon: engineering an intermediate band in silicon for photovoltaic applications. Abstracts of Papers of the American Chemical Society, 240(2010).

    [32] C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, F. Y. Genin. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl. Phys. A, 79, 1635-1641(2004).

    [33] J. T. Sullivan, C. B. Simmons, J. J. Krich, A. J. Akey, D. Recht, M. J. Aziz, T. Buonassisi. Methodology for vetting heavily doped semiconductors for intermediate band photovoltaics: a case study in sulfur-hyperdoped silicon. J. Appl. Phys., 114, 103701(2013).

    [34] M. J. Sher, E. Mazur. Intermediate band conduction in femtosecond-laser hyperdoped silicon. Appl. Phys. Lett., 105, 032103(2014).

    [35] I. Umezu, J. M. Warrender, S. Charnvanichborikarn, A. Kohno, J. S. Williams, M. Tabbal, D. G. Papazoglou, X.-C. Zhang, M. J. Aziz. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. J. Appl. Phys., 113, 213501(2013).

    [36] T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, E. Mazur. Microstructuring of silicon with femtosecond laser pulses. Appl. Phys. Lett., 73, 1673-1675(1998).

    [37] C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Younkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, A. Karger. Near-unity below-band-gap absorption by microstructured silicon. Appl. Phys. Lett., 78, 1850-1852(2001).

    [38] R. Younkin, J. E. Carey, E. Mazur, J. A. Levinson, C. M. Friend. Infrared absorption by conical silicon microstructures made in a variety of background gases using femtosecond-laser pulses. J. Appl. Phys., 93, 2626-2629(2003).

    [39] C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, F. Y. Genin. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl. Phys. Lett., 84, 1850-1852(2004).

    [40] M.-J. Sher, Y.-T. Lin, M. T. Winkler, E. Mazur, C. Pruner, A. Asenbaum. Mid-infrared absorptance of silicon hyperdoped with chalcogen via fs-laser irradiation. J. Appl. Phys., 113, 063520(2013).

    [41] J. T. Sullivan, C. B. Simmons, T. Buonassisi, J. J. Krich. Targeted search for effective intermediate band solar cell materials. IEEE J. Photovolt., 5, 212-218(2015).

    [42] F. Rollert, N. A. Stolwijk, H. Mehrer. Solubility, diffusion and thermodynamic properties of silver in silicon. J. Phys. D, 20, 1148-1155(1987).

    [43] A. Fazzio, M. J. Caldas, A. Zunger. Electronic-structure of copper, silver, and gold impurities in silicon. Phys. Rev. B, 32, 934-954(1985).

    [44] K. Yamasaki, M. Yoshida, T. Sugano. Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys., 18, 113-122(1979).

    [45] Y. J. Fang, Q. F. Dong, Y. C. Shao, Y. B. Yuan, J. S. Huang. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics, 9, 679-686(2015).

    [46] L. Li, Y. Deng, C. Bao, Y. Fang, H. Wei, S. Tang, F. Zhang, J. Huang. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response. Adv. Opt. Mater., 5, 1700672(2017).

    [47] J. E. Carey, C. H. Crouch, M. Y. Shen, E. Mazur. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt. Lett., 30, 1773-1775(2005).

    [48] R. Dong, Y. J. Fang, J. Chae, J. Dai, Z. G. Xiao, Q. F. Dong, Y. B. Yuan, A. Centrone, X. C. Zeng, J. S. Huang. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater., 27, 1912-1918(2015).

    [49] F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, J. S. Huang. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol., 7, 798-802(2012).

    Xiaodong Qiu, Zijing Wang, Xiaotong Hou, Xuegong Yu, Deren Yang. Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon[J]. Photonics Research, 2019, 7(3): 351
    Download Citation