• Acta Geographica Sinica
  • Vol. 75, Issue 9, 1907 (2020)
Jia LIU1、2, Yihang LIANG1、3, Peng LI1、2, and Chiwei XIAO1、2
Author Affiliations
  • 1Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Earth Science and Resource, Chang'an University, Xi'an 710000, China
  • show less
    DOI: 10.11821/dlxb202009007 Cite this Article
    Jia LIU, Yihang LIANG, Peng LI, Chiwei XIAO. Occurrence characteristics and response to El Niño of MODIS-based active fires in Indonesia during 2001-2018[J]. Acta Geographica Sinica, 2020, 75(9): 1907 Copy Citation Text show less
    References

    [1] Harden J W, Trunbore S E, Stocks B J et al. The role of fire in the boreal carbon budget[J]. Global Change Biology, 6, 174-184(2000).

    [2] Bond W J, Woodward F I, Midgley G F. The global distribution of ecosystems in a world without fire[J]. New Phytologist, 165, 525-537(2005).

    [3] Crutzen P J, Andreae M O. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles[J]. Science, 250, 1669-1678(1990).

    [4] Bowman D M J S, Balch J K, Artaxo P et al. Fire in the earth system[J]. Science, 324, 481-484(2009).

    [5] Flannigan M D, Krawchuk M A, de Groot W J et al. Implications of changing climate for global wildland fire[J]. International Journal of Wildland Fire, 18, 483-507(2009).

    [6] Westerling A L, Hidalgo H G, Cayan D R et al. Warming and earlier spring increase Western U.S. forest wildfire activity[J]. Science, 313, 940-943(2006).

    [7] Cochrane M A, Barber C P. Climate change, human land use and future fires in the Amazon[J]. Global Change Biology, 15, 601-612(2009).

    [8] Pechony O, Shindell D T. Driving forces of global wildfires over the past millennium and the forthcoming century[C]. Proceedings of the National Academy of Sciences of USA, 107, 19167-19170(2010).

    [9] van der Werf G R, Randerson J T, Giglio L et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)[J]. Atmospheric Chemistry and Physics, 10, 11707-11735(2010).

    [10] Turetsky M R, Benscoter B, Page S et al. Global vulnerability of peatlands to fire and carbon loss[J]. Nature Geoscience, 8, 11-14(2015).

    [11] van der Werf G R, Randerson J T, Giglio L et al. Global fire emissions estimates during 1997-2016[J]. Earth System Science Data, 9, 697-720(2017).

    [12] Jolly W M, Cochrane M A, Freeborn P H et al. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 6, 1-11(2015).

    [13] Lelieveld J, Evans J S, Fnais M et al. The contribution of outdoor air pollution sources to premature mortality on a global scale[J]. Nature, 525, 367-371(2015).

    [14] Vadrevu K P, Lasko K, Giglio L et al. Trends in vegetation fires in south and southeast Asian countries[J]. Scientific Reports, 9, 7422(2019). https://www.ncbi.nlm.nih.gov/pubmed/31092858

    [15] Lee H-H, Bar-Or R Z, Wang C. Biomass burning aerosols and the low-visibility events in Southeast Asia[J]. Atmospheric Chemistry and Physics, 17, 965-980(2017).

    [16] Marlier M E, DeFries R S, Voulgarakis A et al. El Niño and health risks from landscape fire emissions in southeast Asia[J]. Nature Climate Change, 3, 131-136(2013).

    [17] Lestari R K, Watanabe M, Imada Y et al. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming[J]. Environmental Research Letters, 9, 104010(2014).

    [18] Ketterings Q M, Tri Wibowo T, van Noordwijk M et al. Farmers' perspectives on slash-and-burn as a land clearing method for small-scale rubber producers in Sepunggur, Jambi Province, Sumatra, Indonesia[J]. Forest Ecology and Management, 120, 157-169(1999).

    [19] Marlier M E, DeFries R S, Kim P S et al. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia[J]. Environmental Research Letters, 10, 085005(2015).

    [20] Wösten J H M, Clymans E, Page S E et al. Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia[J]. Catena, 73, 212-224(2008).

    [21] Huijnen V, Wooster M J, Kaiser J W et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997[J]. Scientific Reports, 6, 26886(2016).

    [22] Ott L, Duncan B, Pawson S et al. Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM[J]. Journal of Geophysical Research, 115, 1-16(2010).

    [23] Heil A, Goldammer J G. Smoke-haze pollution: A review of the 1997 episode in Southeast Asia[J]. Regional Environmental Change, 2, 24-37(2001).

    [24] Jones D S. ASEAN and transboundary haze pollution in Southeast Asia[J]. Asia Europe Journal, 4, 431-446(2006).

    [25] Crippa P, Castruccio S, Archer-Nicholls S et al. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia[J]. Scientific Reports, 6, 37074(2016).

    [26] Thirumalai K, DiNezio P N, Okumura Y et al. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming[J]. Nature Communications, 8, 15531(2017).

    [27] Wooster M J, Perry G L W, Zoumas A. Fire, drought and El Nino relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980-2000)[J]. Biogeosciences, 9, 317-340(2012).

    [28] Kogan F, Guo W. Strong 2015-2016 El Niño and implication to global ecosystems from space data[J]. International Journal of Remote Sensing, 38, 161-178(2017).

    [29] Heil A, Langmann B, Aldrian E. Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model[J]. Mitigation and Adaptation Strategies for Global Change, 12, 113-133(2006).

    [30] Field R D, van der Werf G R, Fanin T et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought[C]. Proceedings of the National Academy of Sciences of USA, 113, 9204-9209(2016).

    [31] Chen C C, Lin H W, Yu J Y et al. The 2015 Borneo fires: What have we learned from the 1997 and 2006 El Niños?[J]. Environmental Research Letters, 11, 104003(2016).

    [32] Pan X, Chin M, Ichoku C M et al. Connecting Indonesian fires and drought with the type of El Niño and phase of the Indian Ocean Dipole during 1979-2016[J]. Journal of Geophysical Research: Atmospheres, 123, 7974-7988(2018).

    [33] Hansen M C, Potapov P V, Moore R et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 342, 850-853(2013).

    [34] Aldrian E, Dwi Susanto R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature[J]. International Journal of Climatology, 23, 1435-1452(2003).

    [35] Davies D K, Ilavajhala S, Min M W et al. Fire information for resource management system: Archiving and distributing MODIS active fire data[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 72-79(2009).

    [36] Giglio L, Descloitres J, Justice C O et al. An enhanced contextual fire detection algorithm for MODIS[J]. Remote Sensing of Environment, 87, 273-282(2003).

    [37] Schroeder W, Oliva P, Giglio L et al. The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment[J]. Remote Sensing of Environment, 143, 85-96(2014).

    [38] Giglio L, Schroeder W, Justice C O. The collection 6 MODIS active fire detection algorithm and fire products[J]. Remote Sensing of Environment, 178, 31-41(2016).

    [39] LiPeng, LiWenjun, FengZhiming, et al. Spatiotemporal dynamics of active fire frequency in Southeast Asia with the FIRMS Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) data. Resources Science, 2019,41(8):1526-1540. [ 李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析. 资源科学, 2019,41(8):1526-1540.] [李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析. 资源科学, 2019, 41(8): 1526-1540.]

    [40] Chen Y, Morton D C, Andela N et al. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?[J]. Environmental Research Letters, 11, 45001(2016).

    [41] Chen Y, Morton D C, Andela N et al. A pan-tropical cascade of fire driven by El Niño/Southern Oscillation[J]. Nature Climate Change, 7, 906-911(2017).

    [42] Hidayat R, Juniarti M D, Ma'rufah U. Impact of La Niña and La Niña Modoki on Indonesia rainfall variability//Earth and Environmental Science. IOP Publishing, 149, 012046(2018).

    Jia LIU, Yihang LIANG, Peng LI, Chiwei XIAO. Occurrence characteristics and response to El Niño of MODIS-based active fires in Indonesia during 2001-2018[J]. Acta Geographica Sinica, 2020, 75(9): 1907
    Download Citation