[1] S Moradi, N Qiao, F Stefanini, G Indiveri. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans Biomed Circuits Syst, 12, 106-122(2018).
[2] N Rathi, I Chakraborty, A Kosta, A Sengupta, A Ankit et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware. ACM Comput Surv, 55, 243(2023).
[3] K Roy, A Jaiswal, P Panda. Towards spike-based machine intelligence with neuromorphic computing. Nature, 575, 607-617(2019).
[4] F Ponulak, A Kasinski. Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol Exp, 71, 409-433(2011).
[5] A Taherkhani, A Belatreche, YH Li, G Cosma, LP Maguire et al. A review of learning in biologically plausible spiking neural networks. Neural Netw, 122, 253-272(2020).
[6] SR Nandakumar, I Boybat, M Le Gallo, E Eleftheriou, A Sebastian et al. Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses. Sci Rep, 10, 8080(2020).
[7] A Sengupta, A Banerjee, K Roy. Hybrid spintronic-CMOS spiking neural network with on-chip learning: devices, circuits, and systems. Phys Rev Appl, 6, 064003(2016).
[8] A Sengupta, P Panda, P Wijesinghe, Y Kim, K Roy. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci Rep, 6, 30039(2016).
[9] SH Jo, T Chang, I Ebong, BB Bhadviya, P Mazumder et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 10, 1297-1301(2010).
[10] I Boybat, M Le Gallo, SR Nandakumar, T Moraitis, T Parnell et al. Neuromorphic computing with multi-memristive synapses. Nat Commun, 9, 2514(2018).
[11] AS Cassidy, P Merolla, JV Arthur, SK Esser, B Jackson et al. Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores, 1-10(2013).
[12] H Kim, S Hwang, J Park, S Yun, JH Lee et al. Spiking neural network using synaptic transistors and neuron circuits for pattern recognition with noisy images. IEEE Electron Device Lett, 39, 630-633(2018).
[13] Ö Erdener, S Ozoguz. A new neuron and synapse model suitable for low power VLSI implementation. Analog Integr Circ Sig Process, 89, 749-770(2016).
[14] CD Schuman, TE Potok, RM Patton, JD Birdwell, ME Dean et al. A survey of neuromorphic computing and neural networks in hardware(2017).
[15] XY Meng, GJ Zhang, NN Shi, GY Li, J Azaña et al. Compact optical convolution processing unit based on multimode interference. Nat Commun, 14, 3000(2023).
[16] S Ohno, R Tang, K Toprasertpong, S Takagi, M Takenaka. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics, 9, 2614-2622(2022).
[17] SM Jiao, JW Liu, LW Zhang, FH Yu, GM Zuo et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci, 1, 220010(2022).
[18] CR Huang, VJ Sorger, M Miscuglio, M Al-Qadasi, A Mukherjee et al. Prospects and applications of photonic neural networks. Adv Phys:X, 7, 1981155(2022).
[19] JQ Gu, CH Feng, HQ Zhu, RT Chen, DZ Pan. Light in AI: toward efficient neurocomputing with optical neural networks—a tutorial. IEEE Trans Circuits Syst II:Express Briefs, 69, 2581-2585(2022).
[20] AK Zhao, N Jiang, JF Peng, SQ Liu, YQ Zhang et al. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron Adv, 5, 200026(2022).
[21] CH Li, W Du, YX Huang, JH Zou, LZ Luo et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv, 5, 210069(2022).
[22] SY Xiang, YN Han, ZW Song, XX Guo, YH Zhang et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 42, 023105(2021).
[23] W Coomans, L Gelens, S Beri, J Danckaert, G Van der Sande. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E, 84, 036209(2011).
[24] A Scirè, J Mulet, CR Mirasso, MS Miguel. Intensity and polarization self-pulsations in vertical-cavity surface-emitting lasers. Opt Lett, 27, 391-393(2002).
[25] SY Xiang, H Zhang, XX Guo, JF Li, AJ Wen et al. Cascadable neuron-like spiking dynamics in coupled VCSELs subject to orthogonally polarized optical pulse injection. IEEE J Sel Top Quantum Electron, 23, 1700207(2017).
[26] J Robertson, M Hejda, YH Zhang, J Bueno, SY Xiang et al. Neuromorphic object edge detection with artifical photonic spiking VCSEL-neurons, 1-2(2020).
[27] ZJ Chen, A Sludds, R Davis, I Christen, L Ateshian et al. Coherent VCSEL network computing, 1-3(2022).
[28] BW Ma, WW Zou. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci. China Inf. Sci, 63, 160408(2020).
[29] YC Shi, SY Xiang, XX Guo, YH Zhang, HJ Wang et al. Photonic integrated spiking neuron chip based on a self-pulsating DFB laser with a saturable absorber. Photonics Res, 11, 1382-1389(2023).
[30] SY Xiang, YC Shi, YH Zhang, XX Guo, L Zheng et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network(2023).
[31] SY Xiang, YC Shi, XX Guo, YH Zhang, HJ Wang. et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber. Optica, 10, 162-171(2023).
[32] F Selmi, R Braive, G Beaudoin, I Sagnes, R Kuszelewicz et al. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett, 112, 183902(2014).
[33] J Feldmann, N Youngblood, CD Wright, H Bhaskaran, WHP Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).
[34] MJ Fauth, F Wörgötter, C Tetzlaff. Collective information storage in multiple synapses enables fast learning and slow forgetting. BMC Neurosci, 16, O15(2015).
[35] KD Federmeier, JA Kleim, WT Greenough. Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett, 332, 180-184(2002).
[36] NL Golding, NP Staff, N Spruston. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature, 418, 326-331(2002).
[37] N Hiratani, T Fukai. Redundancy in synaptic connections enables neurons to learn optimally. Proc Natl Acad Sci USA, 115, E6871-E6879(2018).
[38] F Ponulak, A Kasiński. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput, 22, 467-510(2010).
[39] SY Xiang, ZX Ren, ZW Song, YH Zhang, XX Guo et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst, 32, 2494-2505(2021).
[40] R Gütig, H Sompolinsky. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci, 9, 420-428(2006).
[41] A Taherkhani, A Belatreche, YH Li, LP Maguire. DL-ReSuMe: a delay learning-based remote supervised method for spiking neurons. IEEE Trans Neural Netw Learn Syst, 26, 3137-3149(2015).
[42] YN Han, SY Xiang, ZX Ren, CT Fu, AJ Wen et al. Delay-weight plasticity-based supervised learning in optical spiking neural networks. Photonics Res, 9, B119-B127(2021).
[43] SY Xiang, JK Gong, YH Zhang, XX Guo, YN Han et al. Numerical implementation of wavelength-dependent photonic spike timing dependent plasticity based on VCSOA. IEEE J Quantum Electron, 54, 8100107(2018).