• Opto-Electronic Science
  • Vol. 2, Issue 9, 230021-1 (2023)
Yanan Han1, Shuiying Xiang1,*, Ziwei Song1, Shuang Gao1..., Xingxing Guo1, Yahui Zhang1, Yuechun Shi2, Xiangfei Chen3 and Yue Hao1|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Integrated Service Networks, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
  • 2Yongjiang Laboratory, Ningbo 315202, China
  • 3Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, the National Laboratory of Solid State Microstructures, the College of Engineering and Applied Sciences, Institute of Optical Communication Engineering, Nanjing University, Nanjing 210023, China
  • show less
    DOI: 10.29026/oes.2023.230021 Cite this Article
    Yanan Han, Shuiying Xiang, Ziwei Song, Shuang Gao, Xingxing Guo, Yahui Zhang, Yuechun Shi, Xiangfei Chen, Yue Hao. Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip[J]. Opto-Electronic Science, 2023, 2(9): 230021-1 Copy Citation Text show less
    References

    [1] S Moradi, N Qiao, F Stefanini, G Indiveri. A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans Biomed Circuits Syst, 12, 106-122(2018).

    [2] N Rathi, I Chakraborty, A Kosta, A Sengupta, A Ankit et al. Exploring neuromorphic computing based on spiking neural networks: algorithms to hardware. ACM Comput Surv, 55, 243(2023).

    [3] K Roy, A Jaiswal, P Panda. Towards spike-based machine intelligence with neuromorphic computing. Nature, 575, 607-617(2019).

    [4] F Ponulak, A Kasinski. Introduction to spiking neural networks: information processing, learning and applications. Acta Neurobiol Exp, 71, 409-433(2011).

    [5] A Taherkhani, A Belatreche, YH Li, G Cosma, LP Maguire et al. A review of learning in biologically plausible spiking neural networks. Neural Netw, 122, 253-272(2020).

    [6] SR Nandakumar, I Boybat, M Le Gallo, E Eleftheriou, A Sebastian et al. Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses. Sci Rep, 10, 8080(2020).

    [7] A Sengupta, A Banerjee, K Roy. Hybrid spintronic-CMOS spiking neural network with on-chip learning: devices, circuits, and systems. Phys Rev Appl, 6, 064003(2016).

    [8] A Sengupta, P Panda, P Wijesinghe, Y Kim, K Roy. Magnetic tunnel junction mimics stochastic cortical spiking neurons. Sci Rep, 6, 30039(2016).

    [9] SH Jo, T Chang, I Ebong, BB Bhadviya, P Mazumder et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 10, 1297-1301(2010).

    [10] I Boybat, M Le Gallo, SR Nandakumar, T Moraitis, T Parnell et al. Neuromorphic computing with multi-memristive synapses. Nat Commun, 9, 2514(2018).

    [11] AS Cassidy, P Merolla, JV Arthur, SK Esser, B Jackson et al. Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores, 1-10(2013).

    [12] H Kim, S Hwang, J Park, S Yun, JH Lee et al. Spiking neural network using synaptic transistors and neuron circuits for pattern recognition with noisy images. IEEE Electron Device Lett, 39, 630-633(2018).

    [13] Ö Erdener, S Ozoguz. A new neuron and synapse model suitable for low power VLSI implementation. Analog Integr Circ Sig Process, 89, 749-770(2016).

    [14] CD Schuman, TE Potok, RM Patton, JD Birdwell, ME Dean et al. A survey of neuromorphic computing and neural networks in hardware(2017).

    [15] XY Meng, GJ Zhang, NN Shi, GY Li, J Azaña et al. Compact optical convolution processing unit based on multimode interference. Nat Commun, 14, 3000(2023).

    [16] S Ohno, R Tang, K Toprasertpong, S Takagi, M Takenaka. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics, 9, 2614-2622(2022).

    [17] SM Jiao, JW Liu, LW Zhang, FH Yu, GM Zuo et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci, 1, 220010(2022).

    [18] CR Huang, VJ Sorger, M Miscuglio, M Al-Qadasi, A Mukherjee et al. Prospects and applications of photonic neural networks. Adv Phys:X, 7, 1981155(2022).

    [19] JQ Gu, CH Feng, HQ Zhu, RT Chen, DZ Pan. Light in AI: toward efficient neurocomputing with optical neural networks—a tutorial. IEEE Trans Circuits Syst II:Express Briefs, 69, 2581-2585(2022).

    [20] AK Zhao, N Jiang, JF Peng, SQ Liu, YQ Zhang et al. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron Adv, 5, 200026(2022).

    [21] CH Li, W Du, YX Huang, JH Zou, LZ Luo et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv, 5, 210069(2022).

    [22] SY Xiang, YN Han, ZW Song, XX Guo, YH Zhang et al. A review: photonics devices, architectures, and algorithms for optical neural computing. J Semicond, 42, 023105(2021).

    [23] W Coomans, L Gelens, S Beri, J Danckaert, G Van der Sande. Solitary and coupled semiconductor ring lasers as optical spiking neurons. Phys Rev E, 84, 036209(2011).

    [24] A Scirè, J Mulet, CR Mirasso, MS Miguel. Intensity and polarization self-pulsations in vertical-cavity surface-emitting lasers. Opt Lett, 27, 391-393(2002).

    [25] SY Xiang, H Zhang, XX Guo, JF Li, AJ Wen et al. Cascadable neuron-like spiking dynamics in coupled VCSELs subject to orthogonally polarized optical pulse injection. IEEE J Sel Top Quantum Electron, 23, 1700207(2017).

    [26] J Robertson, M Hejda, YH Zhang, J Bueno, SY Xiang et al. Neuromorphic object edge detection with artifical photonic spiking VCSEL-neurons, 1-2(2020).

    [27] ZJ Chen, A Sludds, R Davis, I Christen, L Ateshian et al. Coherent VCSEL network computing, 1-3(2022).

    [28] BW Ma, WW Zou. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci. China Inf. Sci, 63, 160408(2020).

    [29] YC Shi, SY Xiang, XX Guo, YH Zhang, HJ Wang et al. Photonic integrated spiking neuron chip based on a self-pulsating DFB laser with a saturable absorber. Photonics Res, 11, 1382-1389(2023).

    [30] SY Xiang, YC Shi, YH Zhang, XX Guo, L Zheng et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network(2023).

    [31] SY Xiang, YC Shi, XX Guo, YH Zhang, HJ Wang. et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber. Optica, 10, 162-171(2023).

    [32] F Selmi, R Braive, G Beaudoin, I Sagnes, R Kuszelewicz et al. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett, 112, 183902(2014).

    [33] J Feldmann, N Youngblood, CD Wright, H Bhaskaran, WHP Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [34] MJ Fauth, F Wörgötter, C Tetzlaff. Collective information storage in multiple synapses enables fast learning and slow forgetting. BMC Neurosci, 16, O15(2015).

    [35] KD Federmeier, JA Kleim, WT Greenough. Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett, 332, 180-184(2002).

    [36] NL Golding, NP Staff, N Spruston. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature, 418, 326-331(2002).

    [37] N Hiratani, T Fukai. Redundancy in synaptic connections enables neurons to learn optimally. Proc Natl Acad Sci USA, 115, E6871-E6879(2018).

    [38] F Ponulak, A Kasiński. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput, 22, 467-510(2010).

    [39] SY Xiang, ZX Ren, ZW Song, YH Zhang, XX Guo et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst, 32, 2494-2505(2021).

    [40] R Gütig, H Sompolinsky. The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci, 9, 420-428(2006).

    [41] A Taherkhani, A Belatreche, YH Li, LP Maguire. DL-ReSuMe: a delay learning-based remote supervised method for spiking neurons. IEEE Trans Neural Netw Learn Syst, 26, 3137-3149(2015).

    [42] YN Han, SY Xiang, ZX Ren, CT Fu, AJ Wen et al. Delay-weight plasticity-based supervised learning in optical spiking neural networks. Photonics Res, 9, B119-B127(2021).

    [43] SY Xiang, JK Gong, YH Zhang, XX Guo, YN Han et al. Numerical implementation of wavelength-dependent photonic spike timing dependent plasticity based on VCSOA. IEEE J Quantum Electron, 54, 8100107(2018).

    Yanan Han, Shuiying Xiang, Ziwei Song, Shuang Gao, Xingxing Guo, Yahui Zhang, Yuechun Shi, Xiangfei Chen, Yue Hao. Pattern recognition in multi-synaptic photonic spiking neural networks based on a DFB-SA chip[J]. Opto-Electronic Science, 2023, 2(9): 230021-1
    Download Citation