• Matter and Radiation at Extremes
  • Vol. 8, Issue 1, 014402 (2023)
A. S. Samsonova), E. N. Nerush, and I. Yu. Kostyukov
Author Affiliations
  • Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950, Russia
  • show less
    DOI: 10.1063/5.0117504 Cite this Article
    A. S. Samsonov, E. N. Nerush, I. Yu. Kostyukov. High-order corrections to the radiation-free dynamics of an electron in the strongly radiation-dominated regime[J]. Matter and Radiation at Extremes, 2023, 8(1): 014402 Copy Citation Text show less
    References

    [1]

    [2] Y.Xu, X.Liu, W.Li, S.Li, Y.Liu, Z.Gan, C.Wang, X.Wang, L.Yu, L.Yuet?al.. The Shanghai Superintense Ultrafast Laser Facility (SULF) project. Progress in Ultrafast Intense Laser Science XVI, 199-217(2021).

    [3] R.Li, Y.Leng, Y.Peng, B.Shao, Y.Li, J.Qian, P.Wang. Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100 PW lasers. Opt. Lett., 45, 2215-2218(2020).

    [4]

    [5] E.Gerstmayr, S.Kuschel, M.Marklund, J. C.Wood, C. D.Murphy, M.Zepf, A.Ilderton, K.Poder, G. M.Samarin, D. R.Symes, P.McKenna, J.Warwick, Z.Najmudin, S. P. D.Mangles, C.Harvey, J. M.Cole, T. G.Blackburn, K. T.Behm, A. G. R.Thomas, G.Sarri, A. S.Joglekar, C. P.Ridgers, C. D.Baird, M. J.Duff, K.Krushelnick. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X, 8, 011020(2018).

    [6] A. G. R.Thomas, M.Tamburini, S.Kuschel, C. H.Keitel, M.Duff, S.Bohlen, E.Gerstmayr, C. P.Ridgers, C. D.Baird, M.Zepf, K.Poder, D. J.Corvan, S. P. D.Mangles, G. M.Samarin, J. M.Cole, K.Krushelnick, P.McKenna, K.Behm, G.Sarri, Z.Najmudin, A.Di Piazza, D. R.Symes, J.Warwick, C. D.Murphy. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X, 8, 031004(2018).

    [7] A.Macchi, M.Tamburini, A.Di Piazza, F.Pegoraro, C. H.Keitel. Radiation reaction effects on radiation pressure acceleration. New J. Phys., 12, 123005(2010).

    [8] F.Pegoraro, M.Tamburini, A.Macchi, T. V.Liseykina. Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations. Phys. Rev. E, 85, 016407(2012).

    [9] E. N.Nerush, I. Y.Kostyukov, A. G.Litvak. Radiative damping in plasma-based accelerators. Phys. Rev. Spec. Top.--Accel. Beams, 15, 111001(2012).

    [10] V. T.Tikhonchuk, R.Capdessus, E.d’Humières. Modeling of radiation losses in ultrahigh power laser-matter interaction. Phys. Rev. E, 86, 036401(2012).

    [11] R.Capdessus, P.McKenna. Influence of radiation reaction force on ultraintense laser-driven ion acceleration. Phys. Rev. E, 91, 053105(2015).

    [12] I. Y.Kostyukov, E. N.Nerush. Laser-driven hole boring and gamma-ray emission in high-density plasmas. Plasma Phys. Controlled Fusion, 57, 035007(2015).

    [13] S.Weber, E. G.Gelfer, A. M.Fedotov. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields. Plasma Phys. Controlled Fusion, 60, 064005(2018).

    [14] A.Fedotov, E.Gelfer, N.Elkina. Unexpected impact of radiation friction: Enhancing production of longitudinal plasma waves. Sci. Rep., 8, 6478(2018).

    [15] A. M.Fedotov, S.Weber, E. G.Gelfer. Radiation induced acceleration of ions in a laser irradiated transparent foil. New J. Phys., 23, 095002(2021).

    [16] I. Y.Kostyukov, A. A.Golovanov, E. N.Nerush. Radiation reaction-dominated regime of wakefield acceleration. New J. Phys., 24, 033011(2022).

    [17] J. L.Martins, T.Grismayer, R. A.Fonseca, L. O.Silva, M.Vranic. Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas, 23, 056706(2016).

    [18] A. G. R.Thomas, C. P.Ridgers, P.Zhang. The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas. New J. Phys., 17, 043051(2015).

    [19] A.Samsonov, I. Y.Kostyukov, M.Serebryakov, E.Nerush. Opacity of relativistically underdense plasmas for extremely intense laser pulses(2022).

    [20] T. V.Liseykina, S. V.Popruzhenko, A.Macchi. Inverse Faraday effect driven by radiation friction. New J. Phys., 18, 072001(2016).

    [21] S. V.Popruzhenko, T. V.Liseykina, A.Macchi. Quantum effects on radiation friction driven magnetic field generation. Eur. Phys. J. Plus, 136, 170(2021).

    [22] E. N.Nerush, I. Y.Kostyukov, A. S.Samsonov. Effect of electron–positron plasma production on the generation of a magnetic field in laser-plasma interactions. Quantum Electron., 51, 861-865(2021).

    [23] A. G. R.Thomas, D.Del Sorbo, D.Seipt, T. G.Blackburn, C. P.Ridgers, C. D.Murphy, J. G.Kirk. Spin polarization of electrons by ultraintense lasers. Phys. Rev. A, 96, 043407(2017).

    [24] C. P.Ridgers, D.Seipt, D.Del Sorbo, A. G. R.Thomas. Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers. Plasma Phys. Controlled Fusion, 60, 064003(2018).

    [25] C. H.Keitel, Y.-Y.Chen, P.-L.He, K. Z.Hatsagortsyan, R.Shaisultanov. Polarized positron beams via intense two-color laser pulses. Phys. Rev. Lett., 123, 174801(2019).

    [26] A. G. R.Thomas, C. P.Ridgers, D.Seipt, D.Del Sorbo. Ultrafast polarization of an electron beam in an intense bichromatic laser field. Phys. Rev. A, 100, 061402(2019).

    [27] M.Büscher, L.Ji, J.Thomas, W.Wang, N.Wang, A.Hützen, Z.Guo, R.Li, Y.Wu, Q.Yu, B.Feng, A.Pukhov, C.Qin, T. P.Rakitzis, X.Geng, L.Zhang, B.Shen, X.Yan. Polarized electron-beam acceleration driven by vortex laser pulses. New J. Phys., 21, 073052(2019).

    [28] J.-X.Li, C. H.Keitel, F.Wan, K. Z.Hatsagortsyan, R.Shaisultanov, Y.-F.Li. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse. Phys. Rev. Lett., 122, 154801(2019).

    [29] W.-M.Wang, H.-S.Hu, Y.-Y.Chen, Y.-F.Li. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field. Phys. Rev. Lett., 125, 044802(2020).

    [30] C. H.Keitel, Y.-F.Li, K. Z.Hatsagortsyan, J.-X.Li, F.Wan, R.Shaisultanov. Ultrarelativistic polarized positron jets via collision of electron and ultraintense laser beams. Phys. Lett. B, 800, 135120(2020).

    [31] C. H.Keitel, Z.Gong, K. Z.Hatsagortsyan. Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization. Phys. Rev. Lett., 127, 165002(2021).

    [32] E. N.Nerush, I. Yu.Kostyukov. Radiation emission by extreme relativistic electrons and pair production by hard photons in a strong plasma wakefield. Phys. Rev. E, 75, 057401(2007).

    [33] A. R.Bell, J. G.Kirk. Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett., 101, 200403(2008).

    [34] N. V.Elkina, I. Y.Kostyukov, N. B.Narozhny, E. N.Nerush, A. M.Fedotov, H.Ruhl. Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett., 106, 035001(2011).

    [35] K.Bennett, J. G.Kirk, C. P.Ridgers, R.Duclous, A. P. L.Robinson, T. D.Arber, A. R.Bell, C. S.Brady. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).

    [36] A. M.Fedotov, N. B.Narozhny. Quantum-electrodynamic cascades in intense laser fields. Phys.-Usp., 58, 95(2015).

    [37] I. Y.Kostyukov, E. N.Nerush. Production and dynamics of positrons in ultrahigh intensity laser-foil interactions. Phys. Plasmas, 23, 093119(2016).

    [38] T.Grismayer, R. A.Fonseca, M.Vranic, L. O.Silva, J. L.Martins. Seeded QED cascades in counterpropagating laser pulses. Phys. Rev. E, 95, 023210(2017).

    [39] M.Vranic, G.Korn, O.Klimo, S.Weber, M.Jirka. QED cascade with 10 PW-class lasers. Sci. Rep., 7, 15302(2017).

    [40] W.Luo, Z.-M.Sheng, F.-Y.Li, C. P.Ridgers, D.Del Sorbo, T.Yuan, J.-Y.Yu, M.Chen, W.-Y.Liu. QED cascade saturation in extreme high fields. Sci. Rep., 8, 8400(2018).

    [41] J.Zhang, W. Y.Liu, X. H.Yuan, T.Yuan, Z. M.Sheng, W.Luo, S. M.Weng, J. Y.Yu, M.Chen. Spatiotemporal distributions of pair production and cascade in solid targets irradiated by ultra-relativistic lasers with different polarizations. Plasma Phys. Controlled Fusion, 60, 065003(2018).

    [42] Z.-M.Sheng, D.Del Sorbo, K.Small, P.McKenna, A. P. L.Robinson, C.Slade-Lowther, M. J.Duff, R.Capdessus, W.Luo, D. R.Blackmanet?al.. Efficient ion acceleration and dense electron–positron plasma creation in ultra-high intensity laser-solid interactions. New J. Phys., 20, 033014(2018).

    [43] F.-Q.Shao, J.-X.Liu, K.Liu, T.-P.Yu, W.-Q.Wang, L.-X.Hu, Y.Yin, Z.-Y.Ge, Y.Lu. Enhanced copious electron–positron pair production via electron injection from a mass-limited foil. Plasma Phys. Controlled Fusion, 60, 125008(2018).

    [44] Z.-M.Sheng, W.Luo, W.-Y.Liu, M.Chen, S.-D.Wu, T.Yuan, F.-Y.Li, J.-Y.Yu, Y.-Y.Ma. Enhanced electron-positron pair production by two obliquely incident lasers interacting with a solid target. Plasma Phys. Controlled Fusion, 60, 095006(2018).

    [45] A. A.Gonoskov, A. V.Bashinov, S. I.Bastrakov, E. S.Efimenko, A. M.Sergeev, A. V.Kim, A. A.Muraviev, I. B.Meyerov. Laser-driven plasma pinching in ee+ cascade. Phys. Rev. E, 99, 031201(2019).

    [46] A. S.Samsonov, E. N.Nerush, I. Y.Kostyukov. Laser-driven vacuum breakdown waves. Sci. Rep., 9, 11133(2019).

    [47] I. Y.Kostyukov, A. S.Samsonov, E. N.Nerush. Hydrodynamical model of QED cascade expansion in an extremely strong laser pulse. Matter Radiat. Extremes, 6, 034401(2021).

    [48] (2016).

    [49] V.Ritus, A.Nikishov. Quantum processes in the field of a plane electromagnetic wave and in a constant field I. Sov. Phys. JETP, 19, 529-541(1964).

    [50] E. M.Lifshitz, L. P.Pitaevskii, V. B.Berestetskii. Quantum Electrodynamics(1982).

    [51] V.Ritus. Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res., 6, 497(1985).

    [52] H.Nitta, M. K.Khokonov. Standard radiation spectrum of relativistic electrons: Beyond the synchrotron approximation. Phys. Rev. Lett., 89, 094801(2002).

    [53] B.King, A.Ilderton, D.Seipt. Extended locally constant field approximation for nonlinear Compton scattering. Phys. Rev. A, 99, 042121(2019).

    [54] A.MacLeod, B.King, T.Heinzl. Locally monochromatic approximation to QED in intense laser fields. Phys. Rev. A, 102, 063110(2020).

    [55] E. G.Gelfer, A. A.Mironov, A. M.Fedotov, S.Weber. Nonlinear Compton scattering in time-dependent electric fields beyond the locally constant crossed field approximation. Phys. Rev. D, 106, 056013(2022).

    [56] T.Podszus, A.Di Piazza. High-energy behavior of strong-field QED in an intense plane wave. Phys. Rev. D, 99, 076004(2019).

    [57] E. N.Nerush, I. I.Artemenko, I. Yu.Kostyukov. Quasiclassical approach to synergic synchrotron-cherenkov radiation in polarized vacuum. New J. Phys, 22, 093072(2020).

    [58] I.Arka, A. R.Bell, J. G.Kirk. Pair production in counter-propagating laser beams. Plasma Phys. Controlled Fusion, 51, 085008(2009).

    [59] W.Leemans, E.Esarey, S.Bulanov, C.Schroeder. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A, 87, 062110(2013).

    [60] J. K.Koga, K.Kondo, S. V.Bulanov, S. S.Bulanov, G.Korn, N. N.Rosanov, T. Z.Esirkepov, M.Kando. Attractors and chaos of electron dynamics in electromagnetic standing wave. Phys. Lett. A, 379, 2044(2015).

    [61] M.Grech, C.Riconda, R.Duclous, F.Niel, F.Amiranoff. From quantum to classical modeling of radiation reaction: A focus on stochasticity effects. Phys. Rev. E, 97, 043209(2018).

    [62] A.Gonoskov, T.Blackburn, M.Marklund, S.Bulanov. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys, 94, 045001(2022).

    [63] C. S.Shen, D.White. Energy straggling and radiation reaction for magnetic bremsstrahlung. Phys. Rev. Lett., 28, 455(1972).

    [64] R.Duclous, A. R.Bell, J. G.Kirk. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions. Plasma Phys. Controlled Fusion, 53, 015009(2010).

    [65] A.Ilderton, A.Gonoskov, M.Marklund, C. N.Harvey. Quantum quenching of radiation losses in short laser pulses. Phys. Rev. Lett., 118, 105004(2017).

    [66] A.Di Piazza, N.Neitz. Stochasticity effects in quantum radiation reaction. Phys. Rev. Lett., 111, 054802(2013).

    [67] C. D.Murphy, T. G.Blackburn, C. P.Ridgers, A. G. R.Thomas, P.McKenna, C.Slade-Lowther, L. E.Bradley, S. P. D.Mangles, C. D.Baird, M.Marklund, D.Del Sorbo. Signatures of quantum effects on radiation reaction in laser–electron-beam collisions. J. Plasma Phys., 83, 715830502(2017).

    [68] W.Gerlach, O.Stern. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys., 9, 349-352(1922).

    [69] L. H.Thomas. The motion of the spinning electron. Nature, 117, 514(1926).

    [70] V.Bargmann, L.Michel, V. L.Telegdi. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2, 435(1959).

    [71] S. R.Mane, Yu. M.Shatunov, K.Yokoya. Spin-polarized charged particle beams in high-energy accelerators. Rep. Prog. Phys, 68, 1997(2005).

    [72] D.Seipt, D.Del Sorbo, A. G. R.Thomas, C. P.Ridgers. Polarized QED cascades. New J. Phys., 23, 053025(2021).

    [73] C. H.Keitel, M.Wen, M.Tamburini. Polarized laser-wakefield-accelerated kiloampere electron beams. Phys. Rev. Lett., 122, 214801(2019).

    [74] E. N.Nerush, I. Y.Kostyukov, A. S.Samsonov. Asymptotic electron motion in the strongly-radiation-dominated regime. Phys. Rev. A, 98, 053858(2018).

    [75] A.Gonoskov, M.Marklund. Radiation-dominated particle and plasma dynamics. Phys. Plasmas, 25, 093109(2018).

    [76] P.Jér?me. Particle acceleration and radiation reaction in a strongly magnetised rotating dipole. Astron. Astrophys, 666, A5(2022).

    [77] S. E.Gralla, V.Paschalidis, Y.Cai. Dynamics of ultrarelativistic charged particles with strong radiation reaction. I. Aristotelian equilibrium state(2022).

    [78] Y. B.Zel’dovich. Interaction of free electrons with electromagnetic radiation. Sov. Phys. Usp, 18, 79(1975).

    [79] L. D.Landau. The Classical Theory of Fields(2013).

    [80] A. D.Piazza. Exact solution of the Landau-Lifshitz equation in a plane wave. Lett. Math. Phys., 83, 305-313(2008).

    [81] J. P.Ostriker, J. E.Gunn. On the motion and radiation of charged particles in strong electromagnetic waves. I. Motion in plane and spherical waves. Astrophys. J., 165, 523(1971).

    [82] M.Grewing, H.Heintzmann, E.Schrüfer. Acceleration of charged particles and radiation reaction in strong plane and spherical waves. II. Z. Phys. A: Hadrons Nucl., 260, 375-384(1973).

    [83] K.Thielheim. Particle acceleration in extremely strong electromagnetic wave fields, 276-278(1993).

    [84] R.Ekman, T.Heinzl, A.Ilderton. Exact solutions in radiation reaction and the radiation-free direction. New J. Phys., 23, 055001(2021).

    A. S. Samsonov, E. N. Nerush, I. Yu. Kostyukov. High-order corrections to the radiation-free dynamics of an electron in the strongly radiation-dominated regime[J]. Matter and Radiation at Extremes, 2023, 8(1): 014402
    Download Citation