• Laser & Optoelectronics Progress
  • Vol. 59, Issue 15, 1516011 (2022)
Qiubai Yang1、2, Hui Shen3, Lei Zhang1, Qiurui Li3, Chunlei Yu1、4、*, Yunfeng Qi3、**, and Lili Hu1、4
Author Affiliations
  • 1Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, China
  • 3Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 4Hangzhou Institute for Advanced Study, University of Chinese Academy of Science, Hangzhou 310024, Zhejiang , China
  • show less
    DOI: 10.3788/LOP202259.1516011 Cite this Article Set citation alerts
    Qiubai Yang, Hui Shen, Lei Zhang, Qiurui Li, Chunlei Yu, Yunfeng Qi, Lili Hu. Research Progress on Ytterbium-Doped Silica Glass Fiber for High-Power Narrow-linewidth Fiber Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516011 Copy Citation Text show less
    References

    [1] Lai W C, Ma P F, Xiao H et al. High-power narrow-linewidth fiber laser technology[J]. High Power Laser and Particle Beams, 32, 121001(2020).

    [2] Zhou P, Su R T, Ma Y X et al. Review of coherent laser beam combining research progress in the past decade[J]. Chinese Journal of Lasers, 48, 0401003(2021).

    [3] Kumar S C, Samanta G K, Ebrahim-Zadeh M. High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO∶sPPLT[J]. Optics Express, 17, 13711-13726(2009).

    [4] Su M Q, You Y, Quan Z et al. 321 W high-efficiency continuous-wave green laser produced by single-pass frequency doubling of narrow-linewidth fiber laser[J]. Applied Optics, 60, 3836-3841(2021).

    [5] Wei L W, Cleva F, Man C N. Coherently combined master oscillator fiber power amplifiers for Advanced Virgo[J]. Optics Letters, 41, 5817-5820(2016).

    [6] Steinke M, Tünnermann H, Kuhn V et al. Single-frequency fiber amplifiers for next-generation gravitational wave detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3100613(2018).

    [7] Wellmann F, Steinke M, Meylahn F et al. High power, single-frequency, monolithic fiber amplifier for the next generation of gravitational wave detectors[J]. Optics Express, 27, 28523-28533(2019).

    [8] Ma P F, Tao R M, Su R T et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 24, 4187-4195(2016).

    [9] Beier F, Hupel C, Nold J et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 24, 6011-6020(2016).

    [10] Beier F, Hupel C, Kuhn S et al. Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier[J]. Optics Express, 25, 14892-14899(2017).

    [11] Zheng Y, Li P, Zhu Z D et al. Progress in high-power narrow-linewidth fiber lasers[J]. Laser & Optoelectronics Progress, 55, 080002(2018).

    [12] Chu Q H, Guo C, Yan D L et al. Recent progress of high power narrow linewidth fiber laser[J]. High Power Laser and Particle Beams, 32, 121004(2020).

    [13] Dawson J W, Messerly M J, Beach R J et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 16, 13240-13266(2008).

    [14] Ran Y, Wang X L, Su R T et al. Research progress of stimulated Brillouin scattering suppression in narrow linewidth fiber amplifiers[J]. Laser & Optoelectronics Progress, 52, 040003(2015).

    [15] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 7, 861-867(2013).

    [16] Wang J J, Liu Y, Li M et al. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 32, 121003(2020).

    [17] Jeong Y, Nilsson J, Sahu J K et al. Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power[J]. Optics Letters, 30, 459-461(2005).

    [18] Jeong Y, Nilsson J, Sahu J K et al. Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 546-551(2007).

    [19] Huang Z M, Shu Q, Tao R M et al. >5 kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).

    [20] Ma P F, Xiao H, Liu W et al. All-fiberized and narrow-linewidth 5 kW power-level fiber amplifier based on a bidirectional pumping configuration[J]. High Power Laser Science and Engineering, 9, 87-93(2021).

    [21] Ma P F, Song J X, Wang G J et al. 6 kW power-level high power narrow-linewidth fiber laser with near diffraction-limited beam quality[J]. Chinese Journal of Lasers, 49, 0916002(2022).

    [22] Ward B G. Maximizing power output from continuous-wave single-frequency fiber amplifiers[J]. Optics Letters, 40, 542-545(2015).

    [23] Webb A S, Boyland A J, Standish R J et al. MCVD in situ solution doping process for the fabrication of complex design large core rare-earth doped fibers[J]. Journal of Non-Crystalline Solids, 356, 848-851(2010).

    [24] Tammela S, Söderlund M, Koponen J et al. The potential of direct nanoparticle deposition for the next generation of optical fibers[J]. Proceedings of SPIE, 6116, 94-102(2006).

    [25] Jeong Y, Sahu J K, Payne D N et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004).

    [26] Otto H J, Modsching N, Jauregui C et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 23, 15265-15277(2015).

    [27] Jauregui C, Otto H J, Stutzki F et al. Simplified modelling the mode instability threshold of high power fiber amplifiers in the presence of photodarkening[J]. Optics Express, 23, 20203-20218(2015).

    [28] Engholm M, Jelger P, Laurell F et al. Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping[J]. Optics Letters, 34, 1285-1287(2009).

    [29] Jelger P, Engholm M, Norin L et al. Degradation-resistant lasing at 980 nm in a Yb/Ce/Al-doped silica fiber[J]. Journal of the Optical Society of America B, 27, 338-342(2010).

    [30] Schuster K, Grimm S, Kalide A et al. Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials[J]. Optical Materials Express, 5, 887-897(2015).

    [31] Zheng J K, Zhao W, Zhao B Y et al. 4.62 kW excellent beam quality laser output with a low-loss Yb/Ce co-doped fiber fabricated by chelate gas phase deposition technique[J]. Optical Materials Express, 7, 1259-1266(2017).

    [32] Zhang F F, Wang Y B, Lin X F et al. Gain-tailored Yb/Ce codoped aluminosilicate fiber for laser stability improvement at high output power[J]. Optics Express, 27, 20824-20836(2019).

    [33] She S F, Liu B, Chang C et al. Yb/Ce codoped aluminosilicate fiber with high laser stability for multi-kW level laser[J]. Journal of Lightwave Technology, 38, 6924-6931(2020).

    [34] Yoo S, Webb A S, Boyland A J et al. Linearly polarized ytterbium-doped fiber laser in a pedestal design with aluminosilicate inner cladding[J]. Laser Physics Letters, 8, 453-457(2011).

    [35] Liu R, Yan D P, Fan Z J et al. Fabrication and 1046 nm laser behaviors of Yb-doped phosphosilicate binary fiber with a pedestal structure[J]. Optical Materials Express, 10, 464-471(2020).

    [36] Möller F, Distler V, Walbaum T et al. Influence of pedestal diameter on mode instabilities in Yb/Ce/Al-doped fibers[J]. Optics Express, 28, 33456-33474(2020).

    [37] Jen C K, Neron C, Shang A et al. Acoustic characterization of silica glasses[J]. Journal of the American Ceramic Society, 76, 712-716(1993).

    [38] Ballato J, Hawkins T, Foy P et al. On the fabrication of all-glass optical fibers from crystals[J]. Journal of Applied Physics, 105, 053110(2009).

    [39] Dragic P, Law P C, Ballato J et al. Brillouin spectroscopy of YAG-derived optical fibers[J]. Optics Express, 18, 10055-10067(2010).

    [40] Dragic P D, Liu Y S, Ballato J et al. YAG-derived fiber for high-power narrow-linewidth fiber lasers[J]. Proceedings of SPIE, 8237, 248-256(2012).

    [41] Dragic P, Hawkins T, Foy P et al. Sapphire-derived all-glass optical fibres[J]. Nature Photonics, 6, 627-633(2012).

    [42] DiGiovanni D J, MacChesney J B, Kometani T Y. Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join[J]. Journal of Non-Crystalline Solids, 113, 58-64(1989).

    [43] Jetschke S, Unger S, Schwuchow A et al. Efficient Yb laser fibers with low photodarkening by optimization of the core composition[J]. Optics Express, 16, 15540-15545(2008).

    [44] Deschamps T, Ollier N, Vezin H et al. Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening[J]. The Journal of Chemical Physics, 136, 014503(2012).

    [45] Likhachev M E, Aleshkina S S, Shubin A V et al. Large-mode-area highly Yb-doped photodarkening-free Al2O3-P2O5-SiO2-based fiber[C](2011).

    [46] Jauregui C, Stutzki F, Tünnermann A et al. Thermal analysis of Yb-doped high-power fiber amplifiers with Al∶P co-doped cores[J]. Optics Express, 26, 7614-7624(2018).

    [47] Dragic P, Cavillon M, Ballato J. On the thermo-optic coefficient of P2O5 in SiO2[J]. Optical Materials Express, 7, 3654-3661(2017).

    [48] Yu N J, Hawkins T W, Bui T V et al. AlPO4 in silica glass optical fibers: deduction of additional material properties[J]. IEEE Photonics Journal, 11, 7103913(2019).

    [49] Li X W, Yu C L, Hu L L et al. 2.2 kW narrow-linewidth single-mode laser output using homemade 25/400 μm Yb-doped double cladding fiber[J]. Acta Optica Sinica, 39, 0636001(2019).

    [50] Shen H, Zhang L, Li Q R et al. 0.25 nm, 4.23 kW all-fiber single-mode fiber laser based on home-made 25 μm/400 μm active fiber[J]. Chinese Journal of Lasers, 49, 1116001(2022).

    [51] Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 21, 2642-2656(2013).

    [52] Zervas M N. Transverse mode instability, thermal lensing and power scaling in Yb3+-doped high-power fiber amplifiers[J]. Optics Express, 27, 19019-19041(2019).

    [53] Dragic P D, Cavillon M, Ballato A et al. A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients[J]. International Journal of Applied Glass Science, 9, 307-318(2018).

    [54] Pan G, Yu N, Meehan B et al. Thermo-optic coefficient of B2O3 and GeO2 co-doped silica fibers[J]. Optical Materials Express, 10, 1509-1521(2020).

    [55] Hawkins T W, Dragic P D, Yu N et al. Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber[J]. Journal of the Optical Society of America B, 38, F38-F49(2021).

    [56] Wang A, George A K, Knight J C. Three-level neodymium fiber laser incorporating photonic bandgap fiber[J]. Optics Letters, 31, 1388-1390(2006).

    [57] Kong F T, Saitoh K, McClane D et al. Mode area scaling with all-solid photonic bandgap fibers[J]. Optics Express, 20, 26363-26372(2012).

    [58] Christensen S L, Papior S R, Johansen M M et al. Photonic crystal fiber technology for monolithic single-mode large-mode-area all-solid amplifier[J]. Proceedings of SPIE, 10897, 255-261(2019).

    [59] Hauge J M, Papior S R, Pedersen J E et al. Narrow-linewidth all-solid large-mode-area photonic crystal fiber amplifier[J]. Proceedings of SPIE, 10897, 368-372(2019).

    [60] Matniyaz T, Li W S, Kalichevsky-Dong M et al. Highly efficient cladding-pumped single-mode three-level Yb all-solid photonic bandgap fiber lasers[J]. Optics Letters, 44, 807-810(2019).

    [61] Shirakawa A, Suzuki Y, Arisa S et al. High-peak power pulse amplification by SRS-suppressed photonic bandgap fiber[C], TuA2_1(2013).

    [62] Pulford B, Ehrenreich T, Holten R et al. 400-W near diffraction-limited single-frequency all-solid photonic bandgap fiber amplifier[J]. Optics Letters, 40, 2297-2300(2015).

    [63] Mart C, Ward B, Pulford B et al. Brillouin gain spectroscopy on LMA Yb-doped photonic bandgap fiber[C], FW5B.4(2016).

    [64] Gu G C, Kong F T, Hawkins T W et al. Extending mode areas of single-mode all-solid photonic bandgap fibers[J]. Optics Express, 23, 9147-9156(2015).

    [65] Dong L, Kong F T, Gu G C et al. Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 316-322(2016).

    [66] Matniyaz T, Bingham S P, Kalichevsky-Dong M T et al. High-power single-frequency single-mode all-solid photonic bandgap fiber laser with kHz linewidth[J]. Optics Letters, 47, 377-380(2022).

    [67] Pulford B, Holten R, Matniyaz T et al. kW-level monolithic single-mode narrow-linewidth all-solid photonic bandgap fiber amplifier[J]. Optics Letters, 46, 4458-4461(2021).

    [68] Galvanauskas A, Swan M C, Liu C H. Effectively-single-mode large core passive and active fibers with chirally-coupled-core structures[C](2008).

    [69] Ma X Q, Liu C H, Chang G Q et al. Angular-momentum coupled optical waves in chirally-coupled-core fibers[J]. Optics Express, 19, 26515-26528(2011).

    [70] Ma X Q, Zhu C, Hu I N et al. Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores[J]. Optics Express, 22, 9206-9219(2014).

    [71] Kanskar M, Zhang J, Koponen J et al. Narrowband transverse-modal-instability (TMI)-free Yb-doped fiber amplifiers for directed energy applications[J]. Proceedings of SPIE, 10512, 65-73(2018).

    [72] Hochheim S, Steinke M, Wessels P et al. Single-frequency chirally-coupled-core all-fiber amplifier with 100 W in a linearly-polarized TEM00-mode[J]. Optics Letters, 45, 939-942(2020).

    [73] Hochheim S, Brockmüller E, Wessels P et al. Highly-Integrated signal and pump combiner in chirally-coupled-core fibers[J]. Journal of Lightwave Technology, 39, 7246-7250(2021).

    [74] Hochheim S, Brockmüller E, Wessels P et al. Single-frequency 336 W spliceless all-fiber amplifier based on a chirally-coupled-core fiber for the next generation of gravitational wave detectors[J]. Journal of Lightwave Technology, 40, 2136-2143(2022).

    [75] Zeng L F, Xi X M, Ye Y et al. Near-single-mode 3 kW monolithic fiber oscillator based on a longitudinally spindle-shaped Yb-doped fiber[J]. Optics Letters, 45, 5792-5795(2020).

    [76] Zeng L F, Xi X M, Ye Y et al. A 1.8 kW fiber laser oscillator employing a section of spindle-shaped core ytterbium-doped fiber[J]. Laser Physics Letters, 17, 095104(2020).

    [77] Zeng L F, Pan Z Y, Xi X M et al. 5 kW monolithic fiber amplifier employing homemade spindle-shaped ytterbium-doped fiber[J]. Optics Letters, 46, 1393-1396(2021).

    [78] Aleshkina S S, Lipatov D S, Levchenko A E et al. Monolithic diffraction-limited 976-nm laser based on saddle-shaped photo darkening-free Yb-doped fiber[J]. Proceedings of SPIE, 10512, 292-299(2018).

    [79] Zeng L F, Xi X M, Ye Y et al. A novel fiber laser oscillator employing saddle-shaped core ytterbium-doped fiber[J]. Applied Physics B, 126, 185(2020).

    [80] Zuo J X, Lin X C. High‐power laser systems[J]. Laser & Photonics Reviews, 16, 2270025(2022).

    [81] Shiraki K, Ohashi M, Tateda M. SBS threshold of a fiber with a Brillouin frequency shift distribution[J]. Journal of Lightwave Technology, 14, 50-57(1996).

    [82] Hansryd J, Dross F, Westlund M et al. Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution[J]. Journal of Lightwave Technology, 19, 1691-1697(2001).

    [83] Hildebrandt M, Büsche S, Wessels P et al. Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers[J]. Optics Express, 16, 15970-15979(2008).

    [84] Theeg T, Sayinc H, Neumann J et al. All-fiber counter-propagation pumped single frequency amplifier stage with 300-W output power[J]. IEEE Photonics Technology Letters, 24, 1864-1867(2012).

    [85] Lou Z K, Han K, Wang X L et al. Increasing the SBS threshold by applying a flexible temperature modulation technique with temperature measurement of the fiber core[J]. Optics Express, 28, 13323-13335(2020).

    [86] Wellmann F, Steinke M, Wessels P et al. Performance study of a high-power single-frequency fiber amplifier architecture for gravitational wave detectors[J]. Applied Optics, 59, 7945-7950(2020).

    [87] Yoshizawa N, Imai T. Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling[J]. Journal of Lightwave Technology, 11, 1518-1522(1993).

    [88] Zhang L, Cui S Z, Liu C et al. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier[J]. Optics Express, 21, 5456-5462(2013).

    [89] Boggio J M C, Marconi J D, Fragnito H L. Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions[J]. Journal of Lightwave Technology, 23, 3808-3814(2005).

    [90] Huang L, Wu H S, Li R X et al. 414 W near-diffraction-limited all-fiberized single-frequency polarization-maintained fiber amplifier[J]. Optics Letters, 42, 1-4(2017).

    [91] Shiraki K, Ohashi M, Tateda M. Suppression of stimulated Brillouin scattering in a fibre by changing the core radius[J]. Electronics Letters, 31, 668-669(1995).

    [92] Trikshev A I, Kurkov A S, Tsvetkov V B et al. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier[J]. Laser Physics Letters, 10, 065101(2013).

    [93] Huang L, Ma P F, Su R T et al. Comprehensive investigation on the power scaling of a tapered Yb-doped fiber-based monolithic linearly polarized high-peak-power near-transform-limited nanosecond fiber laser[J]. Optics Express, 29, 761-782(2021).

    [94] Ye Y, Lin X F, Xi X M et al. Novel constant-cladding tapered-core ytterbium-doped fiber for high-power fiber laser oscillator[J]. High Power Laser Science and Engineering, 9, 142-148(2021).

    [95] Ye Y, Lin X F, Yang B L et al. Tapered Yb-doped fiber enabled a 4 kW near-single-mode monolithic fiber amplifier[J]. Optics Letters, 47, 2162-2165(2022).

    [96] Lai W C, Ma P F, Liu W et al. 550 W single frequency fiber amplifiers emitting at 1030 nm based on a tapered Yb-doped fiber[J]. Optics Express, 28, 20908-20919(2020).

    [97] Li M J, Chen X, Wang J et al. Al/Ge co-doped large mode area fiber with high SBS threshold[J]. Optics Express, 15, 8290-8299(2007).

    [98] Gray S, Liu A P, Walton D T et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 15, 17044-17050(2007).

    [99] Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 39, 666-669(2014).

    [100] Tsvetkov S V, Khudyakov M M, Lobanov A S et al. SBS gain suppression in a passive single-mode optical fiber by the multi-mode acoustic waveguide design[J]. Journal of Lightwave Technology, 39, 592-599(2021).

    [101] Koplow J P, Kliner D A, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Optics Letters, 25, 442-444(2000).

    [102] Huang L J, Kong L C, Leng J Y et al. Impact of high-order-mode loss on high-power fiber amplifiers[J]. Journal of the Optical Society of America B, 33, 1030-1037(2016).

    [103] Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 30-36(2009).

    [104] Marciante J R, Roides R G, Shkunov V V et al. Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering[J]. Optics Letters, 35, 1828-1830(2010).

    [105] Kokki T, Koponen J, Laurila M et al. Fiber amplifier utilizing an Yb-doped large-mode-area fiber with confined doping and tailored refractive index profile[J]. Proceedings of SPIE, 7580, 305-313(2010).

    [106] Ye C G, Koponen J, Kokki T et al. Confined-doped ytterbium fibers for beam quality improvement: fabrication and performance[J]. Proceedings of SPIE, 8237, 520-526(2012).

    [107] Mashiko Y, Nguyen H K, Kashiwagi M et al. 2 kW single-mode fiber laser with 20-m long delivery fiber and high SRS suppression[J]. Proceedings of SPIE, 9728, 29-34(2016).

    [108] Ikoma S, Nguyen H K, Kashiwagi M et al. 3 kW single stage all-fiber Yb-doped single-mode fiber laser for highly reflective and highly thermal conductive materials processing[J]. Proceedings of SPIE, 10083, 175-180(2017).

    [109] Shima K, Ikoma S, Uchiyama K et al. 5-kW single stage all-fiber Yb-doped single-mode fiber laser for materials processing[J]. Proceedings of SPIE, 10512, 45-50(2018).

    [110] Wang Y, Kitahara R, Kiyoyama W et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 11260, 273-278(2020).

    [111] Liao L, Zhang F F, He X L et al. Confined-doped fiber for effective mode control fabricated by MCVD process[J]. Applied Optics, 57, 3244-3249(2018).

    [112] Huang Z M, Shu Q, Luo Y et al. 3.5 kW narrow-linewidth monolithic fiber amplifier at 1064 nm by employing a confined doping fiber[J]. Journal of the Optical Society of America B, 38, 2945-2952(2021).

    [113] Wu H S, Li R X, Xiao H et al. High-power tandem-pumped fiber amplifier with beam quality maintenance enabled by the confined-doped fiber[J]. Optics Express, 29, 31337-31347(2021).

    [114] Wu H S, Song J X, Ma P F et al. High beam quality 6 kW narrow linewidth fiber laser[J]. Infrared and Laser Engineering, 51, 20210859(2022).

    [115] Cooper M A, Gausmann S, Antonio-Lopez J E et al. Confined doping LMA fibers for high power single frequency lasers[J]. Proceedings of SPIE, 11981, 23-29(2022).

    [116] Kalyoncu S K, Mete B, Yenıay A. Diode-pumped triple-clad fiber MOPA with an output power scaling up to 4.67 kW[J]. Optics Letters, 45, 1870-1873(2020).

    [117] Zhang L, Lou F G, Wang M et al. Yb-doped triple-clad fiber for nearly 10 kW level tandem-pumped output[J]. Chinese Journal of Lasers, 48, 1315001(2021).

    [118] Daniel J M O, Simakov N, Hemming A et al. Metal clad active fibres for power scaling and thermal management at kW power levels[J]. Optics Express, 24, 18592-18606(2016).

    [119] Daniel J M O, Simakov N, Hemming A et al. Improved SBS suppression in high power fibre lasers using metal coated active fibre[C](2017).

    [120] Yu C X, Shatrovoy O, Fan T Y et al. Diode-pumped narrow linewidth multi-kilowatt metalized Yb fiber amplifier[J]. Optics Letters, 41, 5202-5205(2016).

    Qiubai Yang, Hui Shen, Lei Zhang, Qiurui Li, Chunlei Yu, Yunfeng Qi, Lili Hu. Research Progress on Ytterbium-Doped Silica Glass Fiber for High-Power Narrow-linewidth Fiber Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(15): 1516011
    Download Citation