• Journal of Semiconductors
  • Vol. 44, Issue 3, 032001 (2023)
Mahmood Radhi Jobayr1、* and Ebtisam M-T. Salman2
Author Affiliations
  • 1Department of Radiology Technology, College of Health and Medical Technology, Middle Technical University (MTU), Baghdad, Iraq
  • 2Department of Physics, College of Education for Pure Science (Ibn-AL-Haitham), University of Baghdad, Baghdad, Iraq
  • show less
    DOI: 10.1088/1674-4926/44/3/032001 Cite this Article
    Mahmood Radhi Jobayr, Ebtisam M-T. Salman. Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials[J]. Journal of Semiconductors, 2023, 44(3): 032001 Copy Citation Text show less
    References

    [1] J P Heremans. Introduction to cryogenic solid state cooling. Tri-Technology Device Refrigeration (TTDR), 9821, 95(2016).

    [2] S W Finefrock, H R Yang, H Y Fang et al. Thermoelectric properties of solution synthesized nanostructured materials. Annu Rev Chem Biomol Eng, 6, 247(2015).

    [3] X Wang, Y Q Shi, L M Ding. To enhance the performance of n-type organic thermoelectric materials. J Semicond, 43, 020202(2022).

    [4] J He, T M Tritt. Advances in thermoelectric materials research: Looking back and moving forward. Science, 357, eaak9997(2017).

    [5] G Özbal, T Senger, C Sevik et al. Ballistic thermoelectric properties of monolayer semiconducting transition metal dichalcogenides and oxides. Phys Rev B, 100, 084515(2019).

    [6] K Esfarjani, M Zebarjadi, Y Kawazoe. Thermoelectric properties of a nanocontact made of two-capped single-wall carbon nanotubes calculated within the tight-binding approximation. Phys Rev B, 73, 085406(2006).

    [7] S Farhangfar. Size-dependent thermoelectricity in nanowires. J Phys D, 44, 125403(2011).

    [8] N T Hung, A R T Nugraha, R Saito. Two-dimensional InSe as a potential thermoelectric material. Appl Phys Lett, 111, 092107(2017).

    [9] X L Zhu, P F Liu, J R Zhang et al. Monolayer SnP3: An excellent p-type thermoelectric material. Nanoscale, 11, 19923(2019).

    [10] J M Skelton, S C Parker, A Togo et al. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Phys Rev B, 89, 205203(2014).

    [11] Z B Gao, J S Wang. Thermoelectric penta-silicene with a high room-temperature figure of merit. ACS Appl Mater Interfaces, 12, 14298(2020).

    [12] Yelgel Ö Ceyda, G P Srivastava. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x single crystals doped with 3 wt.% Te. J Appl Phys, 113, 073709(2013).

    [13] J P Heremans, B Wiendlocha, A M Chamoire. Resonant levels in bulk thermoelectric semiconductors. Energy Environ Sci, 5, 5510(2012).

    [14] T J Zhu, Y T Liu, C G Fu et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater, 29, 1605884(2017).

    [15] T Fang, S Q Zheng, T Zhou et al. Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Phys Chem Chem Phys, 19, 4411(2017).

    [16] R Y Wang, J P Feser, J S Lee et al. Enhanced thermopower in PbSe nanocrystal quantum dot superlattices. Nano Lett, 8, 2283(2008).

    [17] P Yan, G Y Gao, G Q Ding et al. Bilayer MSe2 (M = Zr, Hf) as promising two-dimensional thermoelectric materials: A first-principles study. RSC Adv, 9, 12394(2019).

    [18] S Li, Y M Wang, C Chen et al. Heavy doping by bromine to improve the thermoelectric properties of n-type polycrystalline SnSe. Adv Sci, 5, 1800598(2018).

    [19] S Kim, C Lee, Y S Lim et al. Investigation for thermoelectric properties of the MoS2 monolayer-graphene heterostructure: Density functional theory calculations and electrical transport measurements. ACS Omega, 6, 278(2020).

    [20] H Kara, M Upadhyay Kahaly, K Özdoğan. Thermoelectric response of quaternary Heusler compound CrVNbZn. J Alloys Compd, 735, 950(2018).

    [21] X M Wu, X X Ke, M L Sui. Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors. J Semicond, 43, 041106(2022).

    [22] M R Jobayr, E M T Salman. Investigation of the thermoelectric properties of one-layer transition metal dichalcogenides. Chin J Phys, 74, 270(2021).

    [23] D Wu, L Huang, P Z Jia et al. Tunable spin electronic and thermoelectric properties in twisted triangulene π-dimer junctions. Appl Phys Lett, 119, 063503(2021).

    [24] X K Chen, X Y Hu, P Jia et al. Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling. Int J Mech Sci, 206, 106576(2021).

    [25] Q Y Zhao, Y H Guo, K Y Si et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys Status Solidi B, 254, 1700033(2017).

    [26] D Qin, X J Ge, G Q Ding et al. Strain-induced thermoelectric performance enhancement of monolayer ZrSe2. RSC Adv, 7, 47243(2017).

    [27] Q R Yao, L J Zhang, P Bampoulis et al. Nanoscale investigation of defects and oxidation of HfSe2. J Phys Chem C, 122, 25498(2018).

    [28] L Ju, M Bie, J Shang et al. Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. J Phys Mater, 3, 022004(2020).

    [29] R Q Guo, X J Wang, Y D Kuang et al. First-principles study of anisotropic thermoelectric transport properties of IV-VI semiconductor compounds SnSe and SnS. Phys Rev B, 92, 115202(2015).

    [30] D Wickramaratne, F Zahid, R K Lake. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J Chem Phys, 140, 124710(2014).

    [31] E Witkoske, X Wang, J Maassen et al. Universal behavior of the thermoelectric figure of merit, zT,vs. quality factor. Mater Today Phys, 8, 43(2019).

    [32] O N Koroleva, A V Mazhukin, V I Mazhukin et al. Approximation of Fermi-Dirac integrals of different orders used to determine the thermal properties of metals and semiconductors. Mathematica Montisnigri, 35, 37(2016).

    [33] J A Hernandez, A Ruiz, L F Fonseca et al. Thermoelectric properties of SnSe nanowires with different diameters. Sci Rep, 8, 11966(2018).

    [34] D Qin, P Yan, G Q Ding et al. Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci Rep, 8, 2764(2018).

    [35] X F Wang, V Askarpour, J Maassen et al. On the calculation of Lorenz numbers for complex thermoelectric materials. J Appl Phys, 123, 055104(2018).

    [36] T J Scheidemantel, C Ambrosch-Draxl, T Thonhauser et al. Transport coefficients from first-principles calculations. Phys Rev B, 68, 125210(2003).

    [37] N Neophytou, H Kosina. Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys Rev B, 83, 245305(2011).

    [38] J M Chen, D Wang, Z G Shuai. First-principles predictions of thermoelectric figure of merit for organic materials: Deformation potential approximation. J Chem Theory Comput, 8, 3338(2012).

    [39] C W Wu, X Ren, G F Xie et al. Enhanced high-temperature thermoelectric performance by strain engineering in BiOCl. Phys Rev Appl, 18, 014053(2022).

    [40] P Z Jia, Z X Xie, Y X Deng et al. High thermoelectric performance induced by strong anharmonic effects in monolayer (PbX)2 (X = S, Se, Te). Appl Phys Lett, 121, 043901(2022).

    [41] A M Ganose, J Park, A Faghaninia et al. Efficient calculation of carrier scattering rates from first principles. Nat Commun, 12, 2222(2021).

    [42] W X Zhang, Z S Huang, W L Zhang et al. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res, 7, 1731(2014).

    [43] L Tang, M Q Long, D Wang et al. The role of acoustic phonon scattering in charge transport in organic semiconductors: A first-principles deformation-potential study. Sci China Ser B, 52, 1646(2009).

    [44] A Yadav, P C Deshmukh, K Roberts et al. An analytic study of the Wiedemann-Franz law and the thermoelectric figure of merit. J Phys Commun, 3, 105001(2019).

    [45] C L Chen, H Wang, Y Y Chen et al. Thermoelectric properties of p-type polycrystalline SnSe doped with Ag. J Mater Chem A, 2, 11171(2014).

    [46] T T Jia, Z Z Feng, S P Guo et al. Screening promising thermoelectric materials in binary chalcogenides through high-throughput computations. ACS Appl Mater Interfaces, 12, 11852(2020).

    [47] G Yumnam, T Pandey, A K Singh. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study. J Chem Phys, 143, 234704(2015).

    [48] M Bittner, N Kanas, R Hinterding et al. A comprehensive study on improved power materials for high-temperature thermoelectric generators. J Power Sources, 410/411, 143(2019).

    [49] Y Z Pei, X Y Shi, A LaLonde et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66(2011).

    [50] M Wolf, R Hinterding, A Feldhoff. High power factorvs. high zT—A review of thermoelectric materials for high-temperature application. Entropy, 21, 1058(2019).

    [51] X Liu, D B Zhang, H Wang et al. Ultralow lattice thermal conductivity and high thermoelectric performance of penta-Sb2C monolayer: A first principles study. J Appl Phys, 130, 185104(2021).

    [52] Y X Zhen, M Yang, H Zhang et al. Ultrahigh power factors in P-type 1T-ZrX2 (X = S, Se) single layers. Sci Bull, 62, 1530(2017).

    [53] Z S Huang, W X Zhang, W L Zhang. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials, 9, 716(2016).

    [54] X Qian, R G Yang. Temperature effect on the phonon dispersion stability of zirconium by machine learning driven atomistic simulations. Phys Rev B, 98, 224108(2018).

    Mahmood Radhi Jobayr, Ebtisam M-T. Salman. Bilayer MSe2 (M = Zr, Hf, Mo, W) performance as a hopeful thermoelectric materials[J]. Journal of Semiconductors, 2023, 44(3): 032001
    Download Citation