• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 4, 460 (2021)
Wenting ZHOU1,*, Xin WANG1, Yuxiang BIAN2,3, Han QIAO1, and Bao FENG2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.04.008 Cite this Article
    ZHOU Wenting, WANG Xin, BIAN Yuxiang, QIAO Han, FENG Bao. Multidimensional reverse negotiation protocol for continuous variable quantum key distribution based on polar code[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 460 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. International Conference on Computers, Systems & Signal Processing, 1984: 175-179.

    [2] Gu Y B, Bao W S, Wang Y. et al. Security of the decoy state two-way quantum key distribution with finite resources[J]. Chinese Physics Letters, 2016, 33(4): 040301.

    [3] Chen H, An X B, Wu J, et al. Hong-Ou-Mandel interference with two independent weak coherent states[J]. Chinese Physics B, 2016, 25(2): 020305.

    [4] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046.

    [5] Cui C H, Yin Z Q, Wang R, et al. Twin-field quantum key distribution without phase post-selection[J]. Physical Review Applied, 2019, 11(3): 034053.

    [6] Qian Y J, He D Y, Wang S, et al. Robust countermeasure against detector control attack in a practical quantum key distribution system[J]. Optica, 2019, 6(9): 1178-1184.

    [7] Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance[J]. Optics Letters, 2018, 43(9): 2030-2033.

    [8] Qian Y J, He D Y, Wang S, et al. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors[J]. Physical Review Applied, 2018, 10(6): 064062.

    [9] Wang S, Yin Z Q, Chau H F, et al. Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme[J]. Quantum Science and Technology, 2018, 3(2): 025006.

    [10] Yin Z Q, Wang S, Chen W, et al. Improved security bound for the round-robin-differential-phase-shift quantum key distribution[J]. Nature Communications, 2018, 9: 457.

    [11] Wang C, Yin Z Q, Wang S, et al. Measurement-device-independent quantum key distribution robust against environmental disturbances[J]. Optica, 2017, 4(9): 1016-1023.

    [12] Li Y, Liao S K, Liang F T, et al. Post-processing free quantum random number generator based on avalanche photodiode array[J]. Chinese Physics Letters, 2016, 33(3): 030303.

    [13] Pirandola S, Mancini S, Lloyd S, et al. Continuous-variable quantum cryptography using two-way quantum communication[J]. Nature Physics, 2008, 4(9): 726-730.

    [14] Cerf N J, Lévy, M, Assche G V. Quantum distribution of Gaussian keys using squeezed states[J]. Physical Review A, 2001, 63(5): 052311.

    [15] Grosshans F, Grangier P. Continuous variable quantum cryptography using coherent states[J]. Physical Review Letters, 2002, 88(5): 057902.

    [16] Jia X J, Duan Z Y, Yan Z H. Dependence of continuous variable entanglement enhancement on experimental parameters[J]. Acta Optica Sinica, 2013, 33(2): 0227001.

    [17] Hu K, Mao Q P, Zhao S M. Round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state[J]. Acta Optica Sinica, 2017, 37(5): 0527002.

    [18] Lin Y, He G Q, Zeng G H. The application of LDPC codes in the multi-dimensional reconciliation of quantum key distribution[J]. Acta Sinica Quantum Optica, 2013, 19(2): 116-121.

    [19] Xiao H, Shi P, Zhao S M. A reconciliation protocol with delayed error correction for quantum key distribution[J]. Scientia Sinica (Technologica), 2015, 45(8): 843-848.

    [20] Bai Z L, Wang X Y, Yang S S, et al. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution[J]. Science China (Physics, Mechanics & Astronomy), 2015, 59(1): 614201.

    [21] Wang X, Zhang Y, Yu S, et al. Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution[J]. Quantum Information & Computation, 2017, 17(13-14): 1123-1134.

    [22] Leverrier A, Alléaume R, Boutros J, et al. Multidimensional reconciliation for a continuous-variable quantum key distribution[J]. Physical Review A, 2008, 77(4): 042325.

    [23] Lu Z, Shi J H, Li F G. Spherical reconciliation for a continuous-variable quantum key distribution[J]. Chinese Physics B, 2017, 26(4): 040304.

    [24] Arikan E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051-3073.

    [25] Afser H, Delic H. On the channel-specific construction of polar codes[J]. IEEE Communications Letters, 2015, 19(9): 1480-1483.

    [26] Ankan E, Hassan N U, Lentmaier M, et al. Challenges and some new directions in channel coding[J]. Journal of Communications and Networks, 2015, 17(4): 328-338.

    [27] Korada S B, Sasoglu E, Urbanke R. Polar codes: Characterization of exponent, bounds, and constructions[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6253-6264.

    [28] Jouguet P, Kunz-Jacques S. High performance error correction for quantum key distribution using polar codes[J]. Quantum Information and Computation, 2014, 14(3-4): 329-338.

    [29] Nakassis A, Mink A. Polar codes in a QKD environment[C]. Quantum Information and Computation XII, 2014: 912305.

    CLP Journals

    [1] XU Kai, CAO Huan, ZHANG Chao, HU Xiaomin, HUANG Yunfeng, LIU Biheng, LI Chuanfeng. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3

    ZHOU Wenting, WANG Xin, BIAN Yuxiang, QIAO Han, FENG Bao. Multidimensional reverse negotiation protocol for continuous variable quantum key distribution based on polar code[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 460
    Download Citation