• Opto-Electronic Engineering
  • Vol. 51, Issue 9, 240149-1 (2024)
Zhenjiu Xiao, Zhengwei Wu, Jiehao Zhang, and Haicheng Qu
Author Affiliations
  • School of Software, Liaoning University of Engineering and Technology, Huludao, Liaoning 125105, China
  • show less
    DOI: 10.12086/oee.2024.240149 Cite this Article
    Zhenjiu Xiao, Zhengwei Wu, Jiehao Zhang, Haicheng Qu. Adaptive foreground focusing for target detection in UAV aerial images[J]. Opto-Electronic Engineering, 2024, 51(9): 240149-1 Copy Citation Text show less
    References

    [1] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [2] X R Xiong, M T He, T Y Li et al. Adaptive feature fusion and improved attention mechanism-based small object detection for UAV target tracking. IEEE Internet Things J, 11, 21239-21249(2024).

    [3] L Ma, Y T Guo, T Lei et al. Small object detection based on multi-scale feature fusion using remote sensing images. Opto-Electron Eng, 49, 210363(2022).

    [4] N Dalal, B Triggs. Histograms of oriented gradients for human detection, 886-893(2005). https://doi.org/10.1109/CVPR.2005.177

    [5] S Q Ren, K M He, R Girshick et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [6] J Redmon, S Divvala, R Girshick et al. You only look once: unified, real-time object detection, 779-788(2016). https://doi.org/10.1109/CVPR.2016.91

    [7] J Redmon, A Farhadi. YOLO9000: better, faster, stronger, 6517-6525(2017). https://doi.org/10.1109/CVPR.2017.690

    [8] J Redmon, A Farhadi. YOLOv3: an incremental improvement(2018). https://doi.org/10.48550/arXiv.1804.02767

    [9] A Bochkovskiy, C Y Wang, H Y M Liao. YOLOv4: optimal speed and accuracy of object detection(2020). https://doi.org/10.48550/arXiv.2004.10934

    [10] Z Ge, S T Liu, F Wang et al. YOLOX: exceeding YOLO series in 2021(2021). https://doi.org/10.48550/arXiv.2107.08430

    [11] W Liu, D Anguelov, D Erhan et al. SSD: single shot MultiBox detector, 21-37(2016). https://doi.org/10.1007/978-3-319-46448-0_2

    [12] Z Zhang, H H Yi, J Zheng. Focusing on small objects detector in aerial images. Acta Electron Sin, 51, 944-955(2023).

    [13] S C Li, X D Yang, X X Lin et al. Real-time vehicle detection from UAV aerial images based on improved YOLOv5. Sensors, 23, 5634(2023).

    [14] K Li, Y N Wang, Z M Hu. Improved YOLOv7 for small object detection algorithm based on attention and dynamic convolution. Appl Sci, 13, 9316(2023).

    [15] G Wang, Y F Chen, P An et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios. Sensors, 23, 7190(2023).

    [16] M L Zhu, E Kong. Multi-scale fusion uncrewed aerial vehicle detection based on RT-DETR. Electronics, 13, 1489(2024).

    [17] Y F Shao, Z X Yang, Z H Li et al. Aero-YOLO: an efficient vehicle and pedestrian detection algorithm based on unmanned aerial imagery. Electronics, 13, 1190(2024).

    [18] W Zhan, C F Sun, M C Wang et al. An improved Yolov5 real-time detection method for small objects captured by UAV. Soft Comput, 26, 361-373(2022).

    [19] P L Chen, J T Wang, Z W Zhang et al. Small object detection in aerial images based on feature aggregation and multiple cooperative features interaction. J Electron Meas Instrum, 37, 183-192(2023).

    [20] J C Sui, D K Chen, X Zheng et al. A new algorithm for small target detection from the perspective of unmanned aerial vehicles. IEEE Access, 12, 29690-29697(2024).

    [21] X Li, W H Wang, X L Hu et al. Selective kernel networks, 510-519(2019). https://doi.org/10.1109/CVPR.2019.00060

    [22] X B Zhao, K Q Liu, K Gao et al. Hyperspectral time-series target detection based on spectral perception and spatial-temporal tensor decomposition. IEEE Trans Geosci Remote Sens, 61, 5520812(2023).

    [23] Y X Wu, K M He. Group normalization, 3-19(2018). https://doi.org/10.1007/978-3-030-01261-8_1

    [24] X Y Yin, J A N Goudriaan, E A Lantinga et al. A flexible sigmoid function of determinate growth. Ann Bot, 91, 361-371(2003).

    [25] M Tanaka. Weighted sigmoid gate unit for an activation function of deep neural network. Pattern Recognit Lett, 135, 354-359(2020).

    [26] Y H Guo, Y D Li, L Q Wang et al. Depthwise convolution is all you need for learning multiple visual domains, 8368-8375(2019). https://doi.org/10.1609/aaai.v33i01.33018368

    [27] A G Howard, M L Zhu, B Chen et al. MobileNets: efficient convolutional neural networks for mobile vision applications(2017). https://doi.org/10.48550/arXiv.1704.04861

    [28] P F Zhang, E Lo, B T Lu. High performance depthwise and pointwise convolutions on mobile devices, 6795-6802(2020). https://doi.org/10.1609/aaai.v34i04.6159

    [29] M Lin, Q Chen, S C Yan. Network in network(2013).

    [30] S Yan, H D Shao, J Wang et al. LiConvFormer: a lightweight fault diagnosis framework using separable multiscale convolution and broadcast self-attention. Expert Syst Appl, 237, 121338(2024).

    [31] A Vaswani, N Shazeer, N Parmar et al. Attention is all you need, 6000-6010(2017).

    [32] A Dosovitskiy, L Beyer, A Kolesnikov et al. An image is worth 16x16 words: transformers for image recognition at scale(2021).

    [33] H Wu, C L Wen, S S Shi et al. Virtual sparse convolution for multimodal 3D object detection, 21653-21662(2023). https://doi.org/10.1109/CVPR52729.2023.02074

    [34] M K Feng, H C Yu, X Y Dang et al. Category-aware dynamic label assignment with high-quality oriented proposal(2024). https://doi.org/10.48550/arXiv.2407.03205

    [35] T Verelst, T Tuytelaars. Dynamic convolutions: exploiting spatial sparsity for faster inference, 2317-2326(2020). https://doi.org/10.1109/CVPR42600.2020.00239

    [36] D W Du, P F Zhu, L Y Wen et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results, 213-226(2019). https://doi.org/10.1109/ICCVW.2019.00030

    [37] Y R Cao, Z J He, L J Wang et al. VisDrone-DET2021: the vision meets drone object detection challenge results, 2847-2854(2021). https://doi.org/10.1109/ICCVW54120.2021.00319

    [38] Y Y Wang, C Wang, H Zhang et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery. Remote Sens, 11, 531(2019).

    [39] X K Zhu, S C Lyu, X Wang et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios, 2778-2788(2021). https://doi.org/10.1109/ICCVW54120.2021.00312

    [40] C Liu, Z Y Hong, W H Yu et al. An efficient helmet wearing detection method based on YOLOv7-tiny, 92-99(2023). https://doi.org/10.1145/3635638.3635652

    [41] X Z Zhu, W J Su, L W Lu et al. Deformable DETR: deformable transformers for end-to-end object detection(2021).

    [42] A Wang, H Chen, L H Liu et al. YOLOv10: real-time end-to-end object detection(2024). https://doi.org/10.48550/arXiv.2405.14458

    [43] S X Li, C Liu, K W Tang et al. Improved YOLOv5s algorithm for small target detection in UAV aerial photography. IEEE Access, 12, 9784-9791(2024).

    Zhenjiu Xiao, Zhengwei Wu, Jiehao Zhang, Haicheng Qu. Adaptive foreground focusing for target detection in UAV aerial images[J]. Opto-Electronic Engineering, 2024, 51(9): 240149-1
    Download Citation