• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2314008 (2021)
Yibo Gao1、2, Yong Yang2, Yugeng Zhou2, Zhenwei Liu2, Wenjie Wu2, Longbiao Gao2, Qiyong Shi2, Xiangbin Kong2, Jianming Zheng2, Jianzhong Fu1、*, Guiying Yu2, Jinhua Wu2, Chunwei Wang2, Bixia Wang2, and Ling Shan2
Author Affiliations
  • 1College of Mechanical Engineering, Zhejiang University, Hangzhou , Zhejiang 310027, China
  • 2Zhejiang Wanfeng Technology Development Co., Ltd., Shaoxing , Zhejiang 312400, China
  • show less
    DOI: 10.3788/LOP202158.2314008 Cite this Article Set citation alerts
    Yibo Gao, Yong Yang, Yugeng Zhou, Zhenwei Liu, Wenjie Wu, Longbiao Gao, Qiyong Shi, Xiangbin Kong, Jianming Zheng, Jianzhong Fu, Guiying Yu, Jinhua Wu, Chunwei Wang, Bixia Wang, Ling Shan. Relative Density of Mold Steel H13 Fabricated by Hybrid Laser Spot Melting[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314008 Copy Citation Text show less
    References

    [1] Xue J Q, Chen X H, Lei L M. Effects of microstructure on mechanical properties of GH3536 alloy fabricated by selective laser melting[J]. Laser & Optoelectronics Progress, 56, 141401(2019).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Mertens R, Vrancken B, Holmstock N et al. Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts[J]. Physics Procedia, 83, 882-890(2016).

    [4] Wang M, Li W, Wu Y et al. High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting[J]. Metallurgical and Materials Transactions B, 50, 531-542(2019).

    [5] Kurzynowski T, Stopyra W, Gruber K et al. Effect of scanning and support strategies on relative density of SLM-ed H13 steel in relation to specimen size[J]. Materials, 12, 239(2019).

    [6] Lee J, Choe J, Park J et al. Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions[J]. Materials Characterization, 155, 109817(2019).

    [7] Zheng D L. Fabrication of H13 steel by selective laser melting and residual stress analysis[D], 16-60(2016).

    [8] Tian J. Study on the fabrication process, microstructure and property of die steel by selective laser melting[D], 19-75(2018).

    [9] Tang Q, Chen P, Chen J Q et al. Numerical simulation of selective laser melting temperature conduction behavior of H13 steel in different models[J]. Optik, 201, 163336(2020).

    [10] Laakso P, Riipinen T, Laukkanen A et al. Optimization and simulation of SLM process for high density H13 tool steel parts[J]. Physics Procedia, 83, 26-35(2016).

    [11] Kempen K, Vrancken B, Buls S et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating[J]. Journal of Manufacturing Science and Engineering, 136, 061026(2014).

    [12] Sander J, Hufenbach J, Giebeler L et al. Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting[J]. Materials & Design, 89, 335-341(2016).

    [13] Ali H, Ma L, Ghadbeigi H et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A, 695, 211-220(2017).

    [14] Mertens R, Dadbakhsh S, Humbeeck J V et al. Application of base plate preheating during selective laser melting[J]. Procedia CIRP, 74, 5-11(2018).

    [15] Uddin S Z, Murr L E, Terrazas C A et al. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 22, 405-415(2018).

    [16] Wang W, Xie Z J, Zhao Z Y et al. Influence of scanning path on the temperature field in selective laser melting[J]. Laser & Optoelectronics Progress, 57, 051401(2020).

    [17] Zhang G H, Guo S Q, Huang S et al. Relative density of GH4169 superalloy prepared by selective laser melting[J]. Laser & Optoelectronics Progress, 57, 031404(2020).

    [18] Simchi A. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features[J]. Materials Science and Engineering: A, 428, 148-158(2006).

    [19] Xue Y, Chen L P[M]. Statistical modeling and R language, 140-144(2007).

    [20] Cao L C, Zhou Q, Han Y F et al. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing[J/OL]. Acta Aeronautica et Astronautica Sinica, 1-37. https://kns.cnki.net/kcms/detail/11. 1929.V.20201209.1048.010.html

    [21] Hojjatzadeh S M H, Parab N D, Guo Q L et al. Direct observation of pore formation mechanisms during LPBF additive manufacturing process and high energy density laser welding[J]. International Journal of Machine Tools and Manufacture, 153, 103555(2020).

    [22] Kannatey-Asibu E,[M]. Principles of laser materials processing(2009).

    [23] Qiu C L, Panwisawas C, Ward M et al. On the role of melt flow into the surface structure and porosity development during selective laser melting[J]. Acta Materialia, 96, 72-79(2015).

    [24] Zhang B C, Liao H L, Coddet C. Selective laser melting commercially pure Ti under vacuum[J]. Vacuum, 95, 25-29(2013).

    [25] Iida T, Guthrie R I L[M]. The physical properties of liquid metals(1993).

    Yibo Gao, Yong Yang, Yugeng Zhou, Zhenwei Liu, Wenjie Wu, Longbiao Gao, Qiyong Shi, Xiangbin Kong, Jianming Zheng, Jianzhong Fu, Guiying Yu, Jinhua Wu, Chunwei Wang, Bixia Wang, Ling Shan. Relative Density of Mold Steel H13 Fabricated by Hybrid Laser Spot Melting[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314008
    Download Citation